Highly diastereoselective route to trans-5-substituted 2-hydroxymethylpyrrolidine derivatives by radical cyclisation

Yoko Yuasa, Jun Ando and Shiroshi Shibuya*
School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji Tokyo 192-03, Japan

Abstract

The cyclisation of radical species generated from (S)- N-(3-bromopropyl)oxazolin-2-ones 22 by treatment with tributylstannane in the presence of AIBN yielded 5 -substituted pyrrolooxazolones with high diastereoselectivity. In the same reaction using (\pm)- N -(3-bromobutyl)oxazolin-2-one 25a or (\pm)- N -(4-bromopentan-2-yl)oxazolin-2-one $\mathbf{2 5 b}$, the radical cyclisation gave predominantly the ($5 S^{*}, 7 S^{*}, 7 \mathrm{a} R^{*}$)5,7 -disubstituted pyrrolooxazolines rather than the ($5 S^{*}, 7 R^{*}, 7 \mathrm{a} R^{*}$) products. The radical cyclisation of 4-phenylsulfanyloxazolidinones $29 \mathrm{a}, \mathrm{b}$ also resulted in the predominant formation of the corresponding ($5 S, 7 S, 7 \mathrm{a}$)-5,7-disubstituted pyrrolooxazolidine derivatives.

The oxazolidinone ring can be considered as a synthon for 2amino alcohols, since the ring can be cleaved easily under mild conditions at the two heteroatoms. ${ }^{1}$ Thus, the pyrrolooxazolidinones 1 can be easily recognised as direct precursors for the synthesis of 5 -substituted 2-hydroxymethylpyrrolidines 2, which are useful intermediates for the synthesis of wide range of trans-2,5-disubstituted pyrrolidines 3 (Scheme 1). The development of diastereoselective synthetic routes to compounds of the type $\mathbf{3}$ is an area of considerable research interest. The enantiomer of $2 \mathbf{a}$ is a starting material for pyrrolidine alkaloids such as 4^{2} and the enantiomer of $\mathbf{2 b}$ would be a potentially useful key intermediate for the synthesis of indolizidine alkaloids such as gephyrotoxin (-)-223AB 5. ${ }^{3}$ Pyrrolidines 3, which have a C_{2} symmetry axis when $\mathrm{R}^{1}=\mathrm{R}^{2}$, have been used as chiral auxiliaries and often give high levels of asymmetric induction. New methodologies to produce this type of pyrrolidine in optically pure form are subject to continual refinement, because only a few approaches to their asymmetric synthesis have been reported. ${ }^{4}$ For the synthesis of pyrrolooxazolidine derivatives, the creation of the new stereogenic centre at the 2-position of the pyrrolidine derivatives via enantioselective cyclisation at the 4 -position of the oxazolinone ring has been studied. Radical cyclisation has been widely applied as an extremely elegant method for the preparation of some carbocyclic as well as heterocyclic compounds and following our interest in free radical cyclisation, ${ }^{5,6}$ we wish to report here the diastereoselective synthesis of 5 -substituted and 5,7-disubstituted pyrroloxazolidinones by the utilization of radical species $\mathbf{6 a}$ and $\mathbf{6 b}$ as the asymmetric templates.

Results and discussion

Synthesis of N-substituted oxazolidin-2-ones 22a-e, 25a,b and 29a,b
Initially, we examined the creation of the chiral centre at the 7aposition of the pyrrolooxazolidinones using the double bond of 2,3-dihydrooxazole as the radical acceptor. ${ }^{7}$ As the first step to the N-(3-bromopropyl)oxazolinones which contain a latent radical centre, we synthesised the bromo alcohols $7 \mathrm{a}-\mathrm{e}$ as outlined in Scheme 2. For the synthesis of $7 \mathbf{a}-\mathbf{e}$, the following two methods can be considered; (i) the conversion of the primary hydroxy group of selectively protected 1,3-diols or non-protected derivatives into bromide as illustrated by the synthesis of $7 \mathrm{a}-\mathrm{c}$, (ii) ring cleavage of the oxirane ring of 3,4-epoxybutyl bromide 19^{8} as exemplified in the synthesis of 7d,e. Thus, $7 \mathbf{a}^{9}$ was synthesised starting from methyl (R)-3-

Scheme 1
hydroxybutanoate 8 . THP protection of $\mathbf{8}(91.0 \%)$, followed by reduction with LiAlH_{4} afforded (R)-3-pyranyloxybutyl alcohol 10 (79.9%). Methanesulfonylation of $\mathbf{1 0}$, followed by treatment of the resulting methanesulfonate with LiBr in acetone gave the bromide 11 in 74.0% yield, which was then deprotected with p TsOH in methanol to yield $7 \mathrm{a}(87.7 \%$). In a similar way, the hydroxy group of 3,4 -(isopropylidenedioxy)butan-1-ol 12, ${ }^{10}$ derived from (S)-malic acid, was converted into $14^{11}(39.3 \%)$ via 13. Acid-catalysed ring cleavage of 14 with $p-\mathrm{TsOH}$ in methanol yielded $15(86.0 \%)$, followed by regioselective protection of the primary hydroxy group with tert-butyldiphenylsilyl chloride (TBDPSCl) furnished 7b in 94.8% yield. The regioselective conversion of the primary hydroxy group of 1,3diol $17^{3 b .12}$ into bromide was illustrated by a preparation of 7c. ${ }^{33,12}$ The chiral 1,3 -diol 17 was easily obtained in 82% yield by reductive ring cleavage of epoxide $16,{ }^{12}$ prepared from (E) -hept-2-en-1-ol, with sodium bis(methoxyethoxy)aluminium hydride (Red-Al). Upon toluene-p-sulfonylation of 17, the reaction occurred regioselectively at the primary hydroxy group to give 18 in 92.6% yield. Treatment of 18 with LiBr in acetone yielded the desired γ-bromo alcohol $7 \mathbf{c}$ in 74.0% yield. Nucleophilic ring cleavage of 3,4-epoxybutyl bromide 19^{8} with Grignard reagents was examined to get 7d,e. Treatment of 19 with p-methoxyphenylmagnesium bromide in the presence of

$$
11 \mathrm{X}=\mathrm{Br}
$$

$14 \mathrm{X}=\mathrm{Br}$

Scheme 2 Reagents and conditions: i, 3,4-dihydropyran, $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$, $\mathrm{Et}_{2} \mathrm{O}$; ii, LiAlH_{4}; iii, $\mathrm{MeSO}_{2} \mathrm{Cl}_{2} \mathrm{Et}_{3} \mathrm{~N}$, then LiBr , acetone. room temp.; iv, \boldsymbol{p} - $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$; v, TBDPSCl, 4-DMAP, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$; vi, cf. reference 12; vii, Red-Al, THF, $0^{\circ} \mathrm{C}$; viii, $p-\mathrm{TsCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0^{\circ} \mathrm{C}$; ix, LiBr , THF, $50^{\circ} \mathrm{C}$; x, for 7d, $p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{MgBr}$, CuI, THF; for 7e, allylmagnesium bromide, CuI, THF

CuI afforded 7d in 72% yield. Similarly, the reaction of allylmagnesium bromide with 19 gave 7 e in 86.4% yield.

The bromopropanols $7 \mathrm{a}-\mathrm{e}$ thus obtained were subjected to a coupling reaction with oxazolidine-2,4-dione utilising an application of the Mitsunobu reaction ${ }^{13}\left[\mathrm{Ph}_{3} \mathrm{P},\left(\mathrm{Pr}^{\mathrm{i}} \mathrm{OC}(\mathrm{O}) \mathrm{N}=\right)_{2}\right.$ in THF] to yield 20a-e (58.6-70.8\%). Reduction of 20a-e with NaBH_{4}, followed by dehydration of the resulting 4-hydroxyoxazolidin-2-ones 21a-e with methanesulfonyl chloride in the presence of triethylamine at room temperature gave the desired N-substituted 2,3-dihydrooxazol-2-ones 22a-e (54.6$57.2 \%$). In order to examine the diastereoselective creation of the two stereogenic centres at the 7 - and 7a-positions of the 5,7disubstituted pyrrolooxazolidinones 32, the oxazolones 25a,b were also prepared. Condensation of 3-bromobutanol or (\pm)-4-bromopentan-2-ol with oxazolidine-2,4-dione afforded the corresponding N-substituted oxazolidine-2,4-diones 23a and 23b, respectively. Since a diastereoisomeric mixture of 4-bromopentan-2-ol was used for the condensation, 23b was

Scheme 3 Reagents and conditions: i , oxazolidine-2,4-dione, $\mathrm{Ph}_{3} \mathrm{P}$, $\left(\operatorname{Pr}^{\mathrm{i}} \mathrm{OC}(\mathrm{O}) \mathrm{N}=\right)_{2}, \mathrm{THF}, 0^{\circ} \mathrm{C}$; ii, $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}$; iii, $\mathrm{MeSO}_{2} \mathrm{Cl}$, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{RT}$
obtained as a $1: 1$ diastereoisomeric mixture, which was used for the following reaction without separation of the isomers. Compounds 23a,b were converted into $\mathbf{2 5 a}$,b via $24 \mathbf{a}, \mathbf{b}$ in 58.6 and 60.4% yields, respectively. The ${ }^{1} \mathrm{H}$ NMR of 25 b clearly indicates this to be a $1: 1$ mixture of diastereoisomers, which was used for the radical cyclisation without resolution of the stereoisomers.
As an alternative method for synthesising the 5,7-disubstituted pyrrolooxazolidinones, we examined the cyclisation of the radicals generated from 4-phenylsulfanyloxazolidinones 29a,b. The synthetic utility of α-acylamino radical cyclisations has been widely reported. ${ }^{14}$ We therefore investigated radical cyclisations using the 4 -phenylsulfanyloxazolidinones $29 \mathrm{a}, \mathrm{b}$ as latent radical centres, in the expectation that 5,7-disubstituted pyrrolooxazolidinones might be formed with high diastereoselectivity. Condensation of (\pm)-pent-4-en-2-ol, and (S)-1-phenylpent-4-en-2-ol with oxazolidine-2,4-dione afforded the corresponding N-substituted oxazolidine-2,4-diones 27a (61.0%) and 27b (63.0%), respectively. 4-Hydroxyoxazolidinones 28a,b, obtained by reduction of 27a,b, were treated with diphenyl disulfide in the presence of tributylphosphine to give the corresponding cyclisation precursors 29 a (62.5%) and 29b (57.8%), respectively.

Radical cyclisation of 22a-e

We started investigating the radical cyclisations with 22a. A benzene solution of 22 a was heated with $\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of AIBN under reflux to yield the ($5 S, 7 \mathrm{a} R$) -5 methylpyrrolooxazolidinone 30a as a single product in 72% yield without formation of the alternative stereoisomer as expected. A particularly noteworthy feature was that the radical cyclisation proceeded with complete facial selectivity with respect to the relative configurations at the $5-\mathrm{H}$ and $7 \mathrm{a}-\mathrm{H}$

Scheme 4 Reagents and conditions: i, oxazolidine-2,4-dione, $\mathrm{Ph}_{3} \mathrm{P}$ $\left(\operatorname{Pr}^{\mathrm{i}} \mathrm{OC}(\mathrm{O}) \mathrm{N}=\right)_{2}, \mathrm{THF}, 0^{\circ} \mathrm{C}$; ii, $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}$; iii, PhSSPh , $\mathrm{Bu}_{3} \mathrm{P}, \mathrm{THF}, \mathrm{RT}$
positions. The relative configuration at these positions was easily established without unambiguity based on the signals due to $5-\mathrm{CH}_{3}\left(\delta_{\mathrm{H}} 1.17, \mathrm{~d}, J 6.6\right)$ and $5-\mathrm{H}\left(\delta_{\mathrm{H}} 4.07\right.$, dd, $J 3.5$ and $8.9)$ in its ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectrum. The chemical shifts and coupling constants of these signals indicate that the 5 -methyl group is cis to $7 \mathrm{a}-\mathrm{H}$ according to our previous work. ${ }^{6}$
The same reaction conditions using $22 \mathbf{b}$ - gave the corresponding 5 -substituted pyrrolooxazolidinones $\mathbf{3 0 b}-\mathbf{e}$. Generally, cyclisation products were obtained in around $70-$ 73% yield and the reaction was found to proceed with particularly high diastereoselectivity without formation of the alternative diastereoisomer. The high diastereoselectivity can be accounted for by adopting transition state 31A in preferance to 31B during cyclisation, in order to avoid 1,3 -steric interactions between the amide carbonyl and the alkyl substituent. ${ }^{6,7}$

Radical cyclisation of $25 \mathrm{a}, \mathrm{b}$ and $29 \mathrm{a}, \mathrm{b}$

In view of our interest in the application of radical cyclisation toward polysubstituted pyrrolidine derivatives, we examined successively the creation of the two stereogenic centres at positions 7 and 7a of the 7-substituted pyrrolooxazolidinones formed by radical cyclisation of 25a,b and 29a,b (Scheme 6). In the radical cyclisation of 25a, 32a and 33a were obtained in a ratio of 2.1:1. Predominant formation of the ($7 S^{*}, 7 \mathrm{a} R^{*}$)isomer can be accounted for by the stability of the 'chair-like' transition state 34A rather than the 'boat-like' one 34B, of the two possible transition states. Similar stereochemical behaviour was also observed in the radical cyclisation of 25b. In these reactions, 32b and 33b were obtained in a ratio of $c a$. 2.4:1. In both cases, high stereoselectivity at positions 5 and 7 a was obtained as in the cases of 22a-e. However, regarding the relative configurations at $7 \mathrm{a}-\mathrm{H}$ and $7-\mathrm{H}$, formation of the $\left(7 S^{*}\right.$, $7 \mathrm{a} R^{*}$) isomer is more favourable than the ($7 R^{*}, 7 \mathrm{a} R^{*}$)-isomer. The relative configurations for 32b and 33b could be assigned by the study of 2D NMR (NOESY) as shown in Fig. 1. As the alternative approach to the formation of the two stereogenic centres at 7 and 7a, radical cyclisation of 29a,b was also examined. In contrast to the radical cyclisation of 25b, the reaction with 29a resulted in the formation predominantly of 32b in 78% yield without formation of the alternative stereoisomer. This considerable difference between 25b and 29a is due to the different reactivities of the alkyl and α acylamino radicals. ${ }^{15}$ Since the reactivity of an α-acylamino radical is diminished by an α-heteroatom, the activation energy for the cyclisation transition state may increase so that the cyclisation would proceed via transition state 35A, which is thermodynamically more stable than transition state 35B. Similarly radical cyclisation with 29b afforded 36 as the sole product.

Conversion of pyrrolooxazolidinones into trans-5-substituted 2hydroxymethylpyrrolidines

Ring cleavage of $\mathbf{3 0 a}(10 \% \mathrm{NaOH}-\mathrm{EtOH})$ gave 37, which afforded 38 on benzyloxycarbonylation with benzyl chloroformate (ZCl) and $\mathrm{K}_{2} \mathrm{CO}_{3}$. The enantiomer of $\mathbf{3 8}$ could be converted into the pyrrolidine alkaloid $4,{ }^{2}$ and therefore this work constitutes a formal synthesis of the enantiomer of 4 . The trans pyrrolidines 43 and 44 which have been widely used as chiral auxiliaries in asymmetric synthesis, were chosen as the appropriate benchmark for the synthetic utility of radical cyclisation product 30b. Desilylation of $\mathbf{3 0 b}$ with tetrabutylammonium fluoride gave 5-hydroxymethylpyrrolooxazolidinone 39 in nearly quantitative yield, which was easily convertible into a variety of 2,5 -bis(alkoxymethyl)pyrrolidine derivatives. Benzylation of 39, followed by alkaline hydrolysis of the resulting O-benzyl derivative 40a yielded 41a, conversion of which into the pyrrolidine 42 was easily achieved by reaction with benzyl bromide in the presence of NaH in DMF. The spectral data and specific rotation of 42 were identical with those in the literature. ${ }^{16}$ Since conversion of 42 into $2 R, 5 R$ bis(benzyloxymethyl)pyrrolidine 43^{15} and trans-2,5-dicarboxylic acid $\mathbf{4 4}^{17}$ is already known, this work should be widely applicable to a synthesis of a variety of pyrrolidines with a C_{2} symmetry axis. Furthermore, O-methylation of $39(\mathrm{NaH}$, $\mathrm{CH}_{3} \mathrm{I}$, DMF) afforded 40b and O-methoxymethylation $\left(\operatorname{Pr}^{i}{ }_{2} \mathrm{NEt}, \mathrm{MOMCl}\right)$ yielded $\mathbf{4 0 c}$. Ring cleavage of $\mathbf{4 0 b}, \mathbf{c}(10 \%$ $\mathrm{NaOH}-\mathrm{EtOH}$, reflux) gave the corresponding trans-2,5-disubstituted pyrrolidine derivatives $\mathbf{4 1 b}, \mathbf{c}$, respectively. The compound 39 would be potentially useful for the synthesis of a variety of trans-2,5-disubstituted pyrrolidines including a variety of derivatives with a C_{2} symmetry axis.

Conclusion

Radical cyclisation of $\mathbf{6 a}\left(\mathrm{R}^{2}=\mathrm{H}\right)$ [formed from N-(3-bromopropyl)oxazolin-2-ones] by treatment with $\mathrm{Bu}_{3} \mathrm{SnH}$ in the presence of AIBN, was found to give the corresponding 5 -substituted pyrrolooxazolidin-2-ones with high diastereoselectivity. Cyclisation of $\mathbf{6 b} \quad\left(\mathbf{R}^{2}=\mathrm{Me}\right)$ furnished pyrrolooxazolidin-2-ones with high diastereoselectivity with regard to the 5 - and 7a-positions, although diastereoselectivity for the relative configuration of the 7-and 7a-positions was not observed, being at most $2: 1$. However, high diastereoselectivity at both the 7 and 7 a centres was observed in the radical cyclisation of the 4-phenylsulfanyloxazolidinone derivatives.

Experimental

All reactions requiring anhydrous conditions were conducted in flame-dried apparatus under nitrogen. Tetrahydrofuran (THF)

25a $R=H$,
25b $\mathrm{R}=\mathrm{Me}$

34B

33

32
Stereochemistry is relative for $\mathbf{2 5 a}, \mathbf{2 5 b}$.

29a $\mathrm{R}=\mathrm{Me}$
29b $\mathrm{R}=\mathrm{CH}_{2} \mathrm{Ph}$

35B

33

35A

32b $\mathrm{R}=\mathrm{Me}$

Stereochemistry is relative for $\mathbf{2 9 a}$.
Scheme 6

32b

33b

Fig. 1 NOESY correlations in 32b and 33b
and diethyl ether ('ether') were distilled from sodium benzophenone ketyl; methylene dichloride $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ was distilled from CaH_{2}. All reactions were monitored by TLC

Scheme 7 Reagents and conditions: i, $10 \% \mathrm{NaOH}-\mathrm{EtOH} ;$ ii, ZCl , $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iii, $\mathrm{HCl}-\mathrm{THF}(1: 4)$; iv, for a $\mathrm{NaH}, \mathrm{BnBr}$; \mathbf{v}, for \mathbf{b} $\mathrm{NaH}, \mathrm{MeI}$; vi, for c diisopropylamine, MOMCl ; vii, $\mathrm{NaH}, \mathrm{BnBr}$
using commercially available glass-backed plates. For column chromatography, silica gel $60(0.043-0.063 \mathrm{~mm})$ was used and the columns were eluted in the flash mode. ${ }^{18}{ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker AM 400 or Varian Gemini 300 operating at 400 MHz and 300 MHz , respectively, in CDCl_{3}. Chemical shift data were measured relative to tetramethylsilane (TMS). The multiplicity of the signal is indicated as $s=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet and $\mathrm{br}=$ broad signal. Coupling constants (J) are given in $\mathrm{Hz} .{ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} on a Bruker AM-400 (100 MHz) relative to $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{c}} 77.0\right.$) unless stated otherwise. Optical rotations were determined with a JASCO DIP-4 polarimeter and $[\alpha]_{\mathrm{D}}$ values are expressed in units of 10^{-1} deg $\mathrm{cm}^{2} \mathrm{~g}^{-1}$. IR spectra were recorded using a Perkin-Elmer 1710 spectrometer and only characteristic bands are given indicating representative functional groups such as OH and $\mathrm{C}=\mathrm{O}$. Mass spectra (MS) were measured on a TSQ 700 and VG Auto Spec instrument.

(R)-4-Bromobutan-2-ol 7a

A mixture of $8(10.6 \mathrm{~g}, 90 \mathrm{mmol})$, 3,4-dihydropyran $(9.08 \mathrm{~g}$, 107.8 mmol), ether ($100 \mathrm{~cm}^{3}$) and $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$ (toluene- p sulfonic acid; $1.7 \mathrm{~g}, 9.0 \mathrm{mmol}$) was stirred at room temp. for 10 h and then the mixture was basified with 5% aq. NaHCO_{3}. The organic layer was evaporated to give $9(17.0 \mathrm{~g}, 91.0 \%)$, 78$86^{\circ} \mathrm{C} / 2 \mathrm{~mm} \mathrm{Hg}$; this was reduced with $\mathrm{LiAlH}_{4}(4.79 \mathrm{~g}, 126.1$ mmol) in ether ($50 \mathrm{~cm}^{3}$) and worked up to give 10 (13.9 g , $79.9 \%), 86-95^{\circ} \mathrm{C} / 2 \mathrm{mmHg}$. To an ice-cooled, stirred mixture of $10(13.0 \mathrm{~g}, 74.7 \mathrm{mmol})$, triethylamine ($15.1 \mathrm{~g}, 149.4 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(60 \mathrm{~cm}^{3}\right)$ was slowly added methanesulfonyl chloride $(12.8 \mathrm{~g}, 112.1 \mathrm{mmol})$. The ice-cooled mixture was stirred for 15 min , and then at room temp. for 12 h , after which the reaction
mixture was quenched with water and extracted with CHCl_{3}. The organic extract was evaporated and the resultant residue was chromatographed on silica gel using hexane-ethyl acetate ($6: 1$) as eluent. The appropriate fractions were evaporated and a mixture of the resulting residue, $\operatorname{LiBr}(12.8 \mathrm{~g}, 149.4 \mathrm{mmol})$ and acetone ($100 \mathrm{~cm}^{3}$) was stirred at room temp. for 4 h . The mixture was evaporated and the resulting residue was diluted with water and extracted with CHCl_{3}. The organic extract was evaporated under reduced pressure and the remaining residue was chromatographed on silica gel, using hexane-ethyl acetate as eluent to give $11(13.0 \mathrm{~g}, 74.0 \%) ; \delta_{\mathrm{H}} 1.23(3 \mathrm{H}, \mathrm{d}, J 6.3), 1.5-$ $1.70(2 \mathrm{H}, \mathrm{m}), 1.87-1.96(6 \mathrm{H}, \mathrm{m}), 3.41$ ($2 \mathrm{H}, \mathrm{t}, J 6.9$), 3.73 (2 H , $\mathrm{dt}, J 2.7,11.5), 4.09(1 \mathrm{H}, \mathrm{dd}, J 4.9,11.5)$ and $4.53(1 \mathrm{H}, \mathrm{t}, J 4.9)$; m / z (EI) $236\left(\mathrm{M}^{+}\right)$and $238\left(\mathrm{M}^{+}+2\right)$. The bromide 11 was stirred at room temp. with a mixture of methanol $\left(70 \mathrm{~cm}^{3}\right)$ and $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~g})$, after which the mixture was evaporated and the resulting residue was chromatographed on silica gel. Elution with hexane-ethyl acetate ($4: 1$) gave $7 \mathbf{a}^{9}(7.34 \mathrm{~g}$, $87.7 \%),[\alpha]_{\mathrm{D}}-31.8$ (c 3.68, CHCl_{3}); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3370$ $(\mathrm{OH}) ; \delta_{\mathrm{H}} 1.25(3 \mathrm{H}, \mathrm{d}, J 6.2), 1.97(2 \mathrm{H}, \mathrm{q}, J 6.1), 3.53(2 \mathrm{H}, \mathrm{q}, J$ 6.1) and 3.99-4.09 ($1 \mathrm{H}, \mathrm{m}$); $m / z(\mathrm{EI}) 154$ and $152\left(\mathrm{M}^{+}\right), 137$ and $135\left(\mathrm{M}^{+}-\mathrm{OH}\right)$.

(S)-4-Bromo-1,2-isopropylidenedioxybutane 14

Methanesulfonyl chloride $(29.4 \mathrm{~g}, 256.8 \mathrm{mmol})$ was slowly added to an ice-cooled, stirred mixture of $12(25 \mathrm{~g}, 171.2 \mathrm{mmol})$ and triethylamine ($34.7 \mathrm{~g}, 342.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(75 \mathrm{~cm}^{3}\right)$. The mixture was stirred at the same temp. for 1 h , and then for an additional 12 h at room temp. The mixture was diluted with CHCl_{3}, washed successively with aq. $\mathrm{HCl}\left(0.5 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ and aq. $\mathrm{NaHCO}_{3}(5 \%)$ and evaporated and the resulting residue was chromatographed on silica gel using hexane-ethyl acetate (3:1). Evaporation of the appropriate fractions gave 13 (37.1 g , 96.8%), which was used for the following reaction without further purification. A mixture of $\mathbf{1 3}(37.1 \mathrm{~g}), \operatorname{LiBr}(36.0 \mathrm{~g}, 414.1$ mmol) and acetone ($100 \mathrm{~cm}^{3}$) was stirred at room temperature for 1 h , after which the mixture was evaporated and the residue chromatographed on silica gel. Elution with hexane-ethyl acetate ($5: 1$) yielded $14^{11}(14.1 \mathrm{~g}, 39.3 \%$ from 12) as a colourless oil; $[\alpha]_{\mathrm{D}}-27.9\left(c 1.22, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 1.34(3 \mathrm{H}, \mathrm{s}), 1.42(3 \mathrm{H}, \mathrm{s})$, 1.98-2.23 ($2 \mathrm{H}, \mathrm{m}$), 3.45-3.54 ($2 \mathrm{H}, \mathrm{m}$), $3.59(1 \mathrm{H}, \mathrm{dd}, J 6.1$ and 8.1), $4.11(1 \mathrm{H}, \mathrm{dd}, J 6.1$ and 8.1$)$ and $4.22-4.31(1 \mathrm{H}, \mathrm{m}) ; m / z$ (EI) 211 and $209\left(\mathrm{M}^{+}+1\right)$.

(S)-4-Bromobutane-1,2-diol 15

A mixture of $14(14.1 \mathrm{~g}, 67.46 \mathrm{mmol}), p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(1.28 \mathrm{~g}, 6.75$ mmol) and methanol ($200 \mathrm{~cm}^{3}$) was stirred at room temp. for 0.5 h , and then basified with aq. $\mathrm{NaHCO}_{3}(5 \%)$. The mixture was filtered and the filtrate evaporated to give an oil, which was chromatographed on silica gel. Elution with hexane-ethyl acetate (1:2) gave $15(9.80 \mathrm{~g}, 86 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}$ $-38.4\left(c 1.64, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 1.99-2.12(2 \mathrm{H}, \mathrm{m}), 3.52-3.64(2 \mathrm{H}$, $\mathrm{m}), 3.52(1 \mathrm{H}, \mathrm{dd}, J 7.1$ and 11.1$), 3.72(1 \mathrm{H}, \mathrm{dd}, J 3.2$ and 11.1$)$ and 3.92-4.02 $(1 \mathrm{H}, \mathrm{m}) ; m / z(\mathrm{CI}) 171$ and $169\left(\mathrm{M}^{+}+1\right), 154$ and $152\left(\mathrm{M}^{+}+1-\mathrm{OH}\right)$ [Found: $\left(\mathrm{M}^{+}-\mathrm{OH}\right), 150.9747$. Calc. for $\left.\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{BrO},(M-\mathrm{OH}), 150.9759\right]$.

(S)-4-Bromo-1-tert-butyldiphenylsilyloxybutan-2-ol 7b

Triethylamine ($8.80 \mathrm{~g}, 86.98 \mathrm{mmol}$) was added to an ice-cooled, stirred mixture of $15(9.80 \mathrm{~g}, 57.96 \mathrm{mmol})$, TBDPSCl $(8.73 \mathrm{~g}$, $57.96 \mathrm{mmol}), 4-N, N^{\prime}$-dimethylaminopyridine $(0.71 \mathrm{~g}, 5.80$ $\mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3}\right)$ and the mixture was stirred for 12 h at the same temperature. The mixture was poured onto water and extracted with CHCl_{3}. The organic extract was evaporated and the residue was chromatographed on silica gel with hexaneethyl acetate ($8: 1$) as eluent to yield 7b $(15.6 \mathrm{~g}, 94.8 \%)$ as colourless oil; $[\alpha]_{\mathrm{D}}-17.0\left(c 1.01, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 1.08(6 \mathrm{H}, \mathrm{s}), 1.57$ ($3 \mathrm{H}, \mathrm{s}$), 1.82-2.06 ($2 \mathrm{H}, \mathrm{m}$), 3.46-3.61 ($3 \mathrm{H}, \mathrm{m}$), 3.69 ($1 \mathrm{H}, \mathrm{dd}, J$ $3.6,10.1), 3.84-3.98(1 \mathrm{H}, \mathrm{m}), 7.34-7.50(6 \mathrm{H}, \mathrm{m})$ and $7.61-7.75$ $(4 \mathrm{H}, \mathrm{m}) ; m / z(\mathrm{EI}) 351$ and $349\left(\mathrm{M}^{+}-\right.$tert-Bu) [Found: (M^{+}

- tert -Bu), 349.0331. Calc. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BrO}_{2} \mathrm{Si},(M-$ tert -Bu), 349.0329].

(R)-Heptane-1,3-diol 17

To a stirred solution of $\mathbf{1 6}(7.8 \mathrm{~g}, 60.0 \mathrm{mmol})$ in THF $\left(150 \mathrm{~cm}^{3}\right)$, Red-Al was slowly added ($3.4 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in toluene; $35.3 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$ and the mixture was stirred at room temperature for 2.5 h . The reaction mixture was quenched with aq. $\mathrm{HCl}(5 \%)$, stirred for an additional 0.5 h , filtered and the filtrate was evaporated. The resulting residue was chromatographed on silica gel with hexane-ethyl acetate ($1: 3$) as eluent to yield $17^{3 b}(6.5 \mathrm{~g}, 82 \%) ;[\alpha]_{\mathrm{D}}-1.94\left(c \quad 1.64, \mathrm{CHCl}_{3}\right)$; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3349(\mathrm{OH}) ; \delta_{\mathrm{H}} 0.88-0.99(3 \mathrm{H}, \mathrm{m}), 1.25-1.80(8$ H, m) and 3.78-3.96 ($3 \mathrm{H}, \mathrm{m}$); $m / z(\mathrm{EI}) 132\left(\mathrm{M}^{+}\right)$.

(R)-3-Hydroxyheptyl toluene- p-sulfonate 18

Triethylamine ($4.43 \mathrm{~g}, 43.8 \mathrm{mmol}$) was slowly added to an icecooled, stirred mixture of $17(3.85 \mathrm{~g}, 29.2 \mathrm{mmol}), 4-N, N^{\prime}-$ dimethylaminopyridine ($0.36 \mathrm{~g}, 2.92 \mathrm{mmol}$), $p-\mathrm{TsCl}(5.85 \mathrm{~g}$, $30.7 \mathrm{mmol})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(80 \mathrm{~cm}^{3}\right)$ and the mixture was stirred for 4 h at the same temperature. The mixture was poured onto water and extracted with CHCl_{3}. The organic extract was evaporated and the residue was chromatographed on silica gel with hexane-ethyl acetate as eluent to give $18(7.74 \mathrm{~g}, 92.6 \%)$; $[\alpha]_{\mathrm{D}}-5.2\left(c 1.04, \mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3563(\mathrm{OH}) ; \delta_{\mathrm{H}} 0.86-$ $0.95(3 \mathrm{H}, \mathrm{m}), 1.23-1.46(6 \mathrm{H}, \mathrm{m}), 1.59-1.72(1 \mathrm{H}, \mathrm{m}), 1.81-1.92$ $(1 \mathrm{H}, \mathrm{m}), 3.68-3.78(1 \mathrm{H}, \mathrm{m}, \mathrm{OH}), 4.09-4.18(2 \mathrm{H}, \mathrm{m}), 4.21-4.32$ $(1 \mathrm{H}, \mathrm{m}), 7.35(2 \mathrm{H}, \mathrm{d}, J 8.3)$ and $7.81(2 \mathrm{H}, \mathrm{d}, J 8.3) ; m / z(\mathrm{EI}) 286$ $\left(\mathrm{M}^{+}\right)$.

(R)-1-Bromoheptan-3-ol 7c

A mixture of $\mathbf{1 8}(7.74 \mathrm{~g}, 27.04 \mathrm{mmol}), \mathrm{LiBr}(5.87 \mathrm{~g}, 67.6 \mathrm{mmol})$ and THF ($85 \mathrm{~cm}^{3}$) was stirred at $50^{\circ} \mathrm{C}$ for 12 h , after which the mixture was evaporated and the resulting residue was chromatographed on silica gel. Elution with hexane-ethyl acetate ($9: 1$) gave $7 \mathbf{c}^{3 b}(3.9 \mathrm{~g}, 74 \%) ;[\alpha]_{\mathrm{D}}-20.0$ (c 1.03 , $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3354(\mathrm{OH}) ; \delta_{\mathrm{H}} 0.86-0.96(3 \mathrm{H}, \mathrm{m})$, $1.24-1.55(6 \mathrm{H}, \mathrm{m}), 1.91-2.03(2 \mathrm{H}, \mathrm{m}), 3.50-3.64(2 \mathrm{H}, \mathrm{m})$ and 3.73-3.86($1 \mathrm{H}, \mathrm{m}$); $m / z(\mathrm{EI})$ 196and 194($\left.\mathrm{M}^{+}\right)$[Found: $\left(\mathrm{M}^{+}-\mathrm{H}\right)$, 193.0235. Calc. for $\left.\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{OBr},(M-\mathrm{H}), 193.0228\right]$.

(R)-4-Bromo-1-(4-methoxyphenyl)butan-2-ol 7d

To a mixture of $\mathrm{CuI}(0.95 \mathrm{~g})$ in THF ($150 \mathrm{~cm}^{3}$) 4methoxyphenylmagnesium bromide ($1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in THF; $49.67 \mathrm{~cm}^{3}$) was added at $-30^{\circ} \mathrm{C}$ and the mixture was stirred for 15 min after which $19(5.0 \mathrm{~g}, 33.11 \mathrm{mmol})$ was slowly added. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h , poured onto water and then extracted with ether. The organic extract was washed with aq. $\mathrm{NH}_{4} \mathrm{Cl}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The resulting residue was chromatographed on silica gel using hexane-ethyl acetate ($10: 1$) as eluent to yield $7 \mathrm{~d}(6.17 \mathrm{~g}, 72.0 \%$) as colourless needles, $\mathrm{mp} 83-84^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-29.1\left(c 1.1, \mathrm{CHCl}_{3}\right)$; $\nu_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3337(\mathrm{OH}) ; \delta_{\mathrm{H}} 1.98-2.11(2 \mathrm{H}, \mathrm{m}), 2.65(1 \mathrm{H}$, dd, $J 8.4$ and 13.7), $2.79(1 \mathrm{H}, \mathrm{dd}, J 4.3$ and 13.7), $3.57(2 \mathrm{H}, \mathrm{t}, J$ $9.9), 3.80(3 \mathrm{H}, \mathrm{s}), 3.92-4.05(1 \mathrm{H}, \mathrm{m}), 6.87(2 \mathrm{H}, \mathrm{d}, J 8.7)$ and $7.14(2 \mathrm{H}, \mathrm{d}, J 8.7) ; m / z(\mathrm{EI}) 259$ and $257\left(\mathrm{M}^{+}\right)$(Found: C, 51.1; $\mathrm{H}, 5.85 . \mathrm{C}_{11} \mathrm{H}_{15} \mathrm{BrO}_{2}$ requires $\mathrm{C}, 51.15 ; \mathrm{H}, 5.85 \%$).

(R)-1-Bromohept-6-ene-3-ol 7e

This compound ($5.52 \mathrm{~g}, 86.4 \%$) was obtained as a colourless oil from 19 ($5 \mathrm{~g}, 33.1 \mathrm{mmol}$) and allylmagnesium bromide (1 mol dm^{-3} solution in THF; $49.67 \mathrm{~cm}^{3}$) according to the same conditions as above: $[\alpha]_{\mathrm{D}}-1.0\left(c 1.21, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3364(\mathrm{OH}) ; \delta_{\mathrm{H}} 1.55-1.69(2 \mathrm{H}, \mathrm{m}), 1.93-2.08$ $(2 \mathrm{H}, \mathrm{m}), 2.10-2.32(2 \mathrm{H}, \mathrm{m}), 3.49-3.68(2 \mathrm{H}, \mathrm{m}), 3.80-3.95$ $(1 \mathrm{H}, \mathrm{m}), 4.90-5.16(2 \mathrm{H}, \mathrm{m})$ and $5.73-5.93(1 \mathrm{H}, \mathrm{m}) ; m / z$ (EI) 139 and $137\left(\mathrm{M}^{+}-\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}\right)$.

General procedure for the synthesis of 20a-e, 23a,b and 27a,b
To an ice-cooled, stirred mixture of alcohol, oxazolidine-2,4-
dione (1.05 equiv. to the alcohol), $\mathrm{Ph}_{3} \mathrm{P}$ (1.05 equiv. to the alcohol) and THF (for a $c a .2 \mathrm{~mol} \mathrm{dm}^{-3}$ solution for the alcohol), a solution of diisopropyl azodicarboxylate (1.05 equiv. to the alcohol) in THF was slowly added. The mixture was stirred at room temperature for 12 h , after which it was evaporated and the resulting residue was chromatographed on silica gel using the solvent shown below as an eluent. Evaporation of the appropriate fractions under reduced pressure yielded the corresponding N-substituted oxazolidine-2,4-dione.
(S)-N-(4-Bromobutan-2-yl)oxazolidine-2,4-dione 20a. The coupling reaction of oxazolidine-2,4-dione with $7 \mathrm{a}(6.06 \mathrm{~g}, 39.6$ $\mathrm{mmol})$ gave 20a $(64.0 \%, 5.98 \mathrm{~g})$ as a colourless oil. Hexaneethyl acetate (6:1) was used as eluent; $[\alpha]_{\mathrm{D}}+13.4$ (c 1.64, $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1811(\mathrm{C}=\mathrm{O})$ and $1741(\mathrm{C}=0) ; \delta_{\mathrm{H}} 1.27$ ($3 \mathrm{H}, \mathrm{d}, J 6.2$), 2.20-2.31 ($1 \mathrm{H}, \mathrm{m}$), 2.65-2.68 (1 H, m), 3.34-3.42 $(2 \mathrm{H}, \mathrm{m}), 4.38-4.50(1 \mathrm{H}, \mathrm{m})$ and $4.66(2 \mathrm{H}, \mathrm{s}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 238$ and $236\left(\mathrm{M}^{+}\right), 130$ and $128\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right)$ (Found: M^{+}, 236.9824. Calc. for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{BrNO}_{3}, M, 236.9790$).
(R)- N-[4-Bromo-1-(tert-butyldiphenylsilyloxy)butan-2-yl]-oxazolidine-2,4-dione 20b. The coupling reaction of oxazolidine-2,4-dione with 7b ($15.5 \mathrm{~g}, 54.77 \mathrm{mmol}$) gave 20b ($58.6 \%, 15.7 \mathrm{~g}$) as a colourless oil. Hexane-ethyl acetate (6:1) was used as eluent $[\alpha]_{\mathrm{D}}-11.2\left(\right.$ c $\left.1.18, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1816(\mathrm{C}=0)$ and $1746(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}} 1.01(6 \mathrm{H}, \mathrm{s}), 1.55(3 \mathrm{H}, \mathrm{s}), 2.06-2.18(1 \mathrm{H}$, $\mathrm{m}), 2.48-2.62(1 \mathrm{H}, \mathrm{m}), 3.25-3.41(2 \mathrm{H}, \mathrm{m}), 3.66(1 \mathrm{H}$, dd, $J 5.3$ and 10.2), $4.07(1 \mathrm{H}, \mathrm{dd}, J 9.6$ and 10.2), 4.42-4.54 (1 $\mathrm{H}, \mathrm{m}), 4.62(2 \mathrm{H}, \mathrm{s}), 7.37-7.50(6 \mathrm{H}, \mathrm{m})$ and $7.58-7.66(4 \mathrm{H}, \mathrm{m})$; m / z (EI) 476 and $474\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right), 434$ and $432\left(\mathrm{M}^{+}-\right.$tertBu) [Found: (M^{+}- tert-Bu), 432.0276. Calc. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{Br}-$ $\mathrm{NO}_{4} \mathrm{Si}$, ($M-$ tert -Bu), 432.0267].
(\mathbf{S})- N -(1-Bromoheptan-3-yl)oxazolidine-2,4-dione 20c. The coupling reaction of oxazolidine-2,4-dione with $7 \mathbf{c}(5.0 \mathrm{~g}, 25.64$ mmol) gave 20c ($65 \%, 4.62 \mathrm{~g}$) as a colourless oil. Hexane-ethyl acetate (6:1) was used as eluent; $[\alpha]_{\mathrm{D}}+6.37\left(c 1.00, \mathrm{CHCl}_{3}\right)$; $\nu_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1815(\mathrm{C}=\mathrm{O})$ and $1746(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 0.88(3 \mathrm{H}, \mathrm{t}, J$ 7), 1.14-1.41 ($4 \mathrm{H}, \mathrm{m}$), 1.59-1.73 ($1 \mathrm{H}, \mathrm{m}$), $1.90-2.05(1 \mathrm{H}, \mathrm{m})$, 2.14-2.26 ($1 \mathrm{H}, \mathrm{m}$), 2.54-2.66 ($1 \mathrm{H}, \mathrm{m}$), 3.25-3.44 ($2 \mathrm{H}, \mathrm{m}$), 4.18-4.30 ($1 \mathrm{H}, \mathrm{m}$) and $4.67(2 \mathrm{H}, \mathrm{s}) ; m / z(E I) 277\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 277.0330$. Calc. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{BrNO}_{3}, M, 277.0314$).
(S)-N-[4-Bromo-1-(4-methoxyphenyl)butan-2-yl]oxazo-
lidine-2,4-dione 20d. The coupling reaction of oxazolidine-2,4dione with 7d ($5.9 \mathrm{~g}, 23.01 \mathrm{mmol}$) gave 20d (4.9 g , 62.5%) as a colourless oil. Hexane-ethyl acetate ($10: 1$) was used as eluent; $[\alpha]_{\mathrm{D}}-34.3\left(c 0.8, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1811$ $(\mathrm{C}=\mathrm{O})$ and $1736(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 2.25-2.38(1 \mathrm{H}, \mathrm{m}), 2.63-2.77(1 \mathrm{H}$, $\mathrm{m}), 3.00(1 \mathrm{H}, \mathrm{dd}, J 5.8$ and 14.0$)$, ($1 \mathrm{H}, \mathrm{dd}, J 10.1$ and 14.0), 3.32-3.47 ($2 \mathrm{H}, \mathrm{m}$), $3.78(3 \mathrm{H}, \mathrm{s}), 4.42(1 \mathrm{H}, \mathrm{d}, J 16.2), 4.52(1 \mathrm{H}$, d, $J 16.2$), 6.82 ($2 \mathrm{H}, \mathrm{d}, J 8.6$) and 7.09 ($2 \mathrm{H}, \mathrm{d}, J 8.6$); m / z (EI) 343 and $341\left(\mathbf{M}^{+}\right)$(Found: \mathbf{M}^{+}, 341.0281. Calc. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrNO}_{4}, M, 341.0263$).
(\boldsymbol{S})- N -(1-Bromohept-6-en-3-yl)oxazolidine-2,4-dione 20e. The coupling reaction of oxazolidine-2,4-dione with $7 \mathrm{e}(5.53 \mathrm{~g}, 28.6$ mmol) gave 20e ($5.57 \mathrm{~g}, 70.8 \%$) as a colourless oil. Hexaneethyl acetate ($8: 1$) was used as eluent; $[\alpha]_{\mathrm{D}}+12.7$ (c 0.49, $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1814(\mathrm{C}=\mathrm{O})$ and $1736(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 1.72-$ $1.84(1 \mathrm{H}, \mathrm{m}), 1.96-2.29(4 \mathrm{H}, \mathrm{m}), 2.55-2.62(1 \mathrm{H}, \mathrm{m}), 3.27-3.43$ $(2 \mathrm{H}, \mathrm{m}), 4.24-4.35(1 \mathrm{H}, \mathrm{m}), 4.65(2 \mathrm{H}, \mathrm{s}), 4.95-5.12(2 \mathrm{H}, \mathrm{m})$ and 5.67-5.83 ($1 \mathrm{H}, \mathrm{m}$); $m / z(\mathrm{CI}) 278$ and $276\left(\mathrm{M}^{+}+1\right)$ [Found: $\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, 219.9582. Calc. for $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{BrNO}_{3},\left(M-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$, 219.9609].
(\pm)- N-(3-Bromobutyl)oxazolidine-2,4-dione 23a. The coupling reaction of 3-bromobutanol $(5.0 \mathrm{~g}, 32.68 \mathrm{mmol})$ with oxazolidine-2,4-dione gave 23 a ($5.17 \mathrm{~g}, 62.3 \%$) as an oil; $\nu_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1818(\mathrm{C}=\mathrm{O})$ and $1734(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 1.76(3 \mathrm{H}, \mathrm{d}, J$ 6.7), 2.13-2.22 ($2 \mathrm{H}, \mathrm{m}$), 3.65-3.87 ($2 \mathrm{H}, \mathrm{m}$), 4.03-4.17 (1 H, m) and $4.71(2 \mathrm{H}, \mathrm{s}) ; m / z$ (EI) 237 and $235\left(\mathrm{M}^{+}\right)$(Found: M^{+}, 234.9837. Calc. for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{BrNO}_{3}, M, 234.9844$).
(\pm)- N-(4-Bromopentan-2-yl)oxazolidine-2,4-dione 23b. The coupling reaction of 4 -bromopentan- 2 -ol $(5.0 \mathrm{~g}, 29.94 \mathrm{mmol})$
with oxazolidine-2,4-dione gave 23b ($4.96 \mathrm{~g}, 66.5 \%$) as a colourless oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1817(\mathrm{C}=\mathrm{O})$ and $1729(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}$ $1.43(1.5 \mathrm{H}, \mathrm{d}, J 7.0), 1.44(1.5 \mathrm{H}, \mathrm{d}, J 7.0), 1.74(1.5 \mathrm{H}, \mathrm{d}, J 6.7)$, $1.75(1.5 \mathrm{H}, \mathrm{d}, J 6.7), 1.92-2.05(0.5 \mathrm{H}, \mathrm{m}), 2.21-2.31(0.5 \mathrm{H}, \mathrm{m})$, 2.35-2.46 ($0.5 \mathrm{H}, \mathrm{m}$), 2.67-2.78 ($0.5 \mathrm{H}, \mathrm{m}$), 3.86-4.16 ($1 \mathrm{H}, \mathrm{m}$), $4.36-4.50(0.5 \mathrm{H}, \mathrm{m}), 4.50-4.60(0.5 \mathrm{H}, \mathrm{m}), 4.65(1 \mathrm{H}, \mathrm{s})$ and 4.67 ($1 \mathrm{H}, \mathrm{s}$); m / z (EI) 251 and $249\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 249.0007$. Calc. for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{BrNO}_{3}, M, 249.0001$).
(\pm)- N -(Pent-4-en-2-yl)oxazolidine-2,4-dione 27a. The coupling reaction of pent-4-en-2-ol ($2.0 \mathrm{~g}, 23.26 \mathrm{mmol}$) with oxazolidine-2,4-dione gave $27 \mathrm{a}(2.40 \mathrm{~g}, 61.0 \%$) as a colourless oil. Hexane-ethyl acetate (7:1) was used as eluent; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1820(\mathrm{C}=\mathrm{O})$ and $1732(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 1.45(3 \mathrm{H}, \mathrm{d}, J$ 6.2), 2.38-2.49 (1 H, m), 2.65-2.80 (1 H, m), 4.16-4.29(1 H, m), $4.60(2 \mathrm{H}, \mathrm{s}), 5.02-5.14(2 \mathrm{H}, \mathrm{m})$ and $5.62-5.78(1 \mathrm{H}, \mathrm{m}) ; m / z$ (EI) $169\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 169.0728$. Calc. for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{NO}_{3}, M$, 169.0739).
(R)- N-(1-Phenylpent-4-en-2-yl)oxazolidine-2,4-dione 27b. The coupling reaction of (S)-1-phenylpent-4-en-2-ol $(2.0 \mathrm{~g}, 12.35$ $\mathrm{mmol})$ with oxazolidine-2,4-dione gave $\mathbf{2 7 b}(1.91 \mathrm{~g}, 63.0 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}+79.3\left(c 0.89, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1815$ $(\mathrm{C}=\mathrm{O})$ and $1741(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 2.54(1 \mathrm{H}, \mathrm{dt}, J 5.2$ and 14.2), $2.82(1$ $\mathrm{H}, \mathrm{dt}, J 9.3$ and 14.0$), 3.08(1 \mathrm{H}, \mathrm{dd}, J 6.0$ and 14.0$), 3.26(1 \mathrm{H}, \mathrm{d}$, $J 10.2$ and 14.0), 4.32-4.45 ($1 \mathrm{H}, \mathrm{m}$), $4.41(1 \mathrm{H}, \mathrm{m}), 4.44(1 \mathrm{H}$, m), 5.07-5.18 ($2 \mathrm{H}, \mathrm{m}$), 5.66-5.80 $(1 \mathrm{H}, \mathrm{m})$ and $7.15-7.34(5 \mathrm{H}$, $\mathrm{m}) ; m / z(\mathrm{CI}) 246\left(\mathrm{M}^{+}+1\right), m / z(\mathrm{EI}) 245\left(\mathrm{M}^{+}\right)$(Found: M^{+}, 245.1072. Calc. for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{3}, M, 245.1052$).

General procedure for the synthesis of 2,3-dihydrooxazol-2-ones 22 and 25

To an ice-cooled stirred solution of 20a-e (or 23a,b) in methanol ($0.2 \mathrm{~mol} \mathrm{dm}^{-3}$), NaBH_{4} (2 equiv.) was slowly added and the mixture was stirred at the same temperature for 0.5 h and then for a further 2 h at room temperature. The reaction mixture was quenched with acetone and evaporated and the resulting residue was chromatographed on silica gel. Elution with hexane-ethyl acetate ($4: 1$) gave the corresponding 4hydroxy derivatives 21 (or 24). To an ice-cooled, stirred mixture of compounds 21 or $\mathbf{2 4}$ and triethylamine (2 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($0.15 \mathrm{~mol} \mathrm{dm}^{-3}$ for 21 or 24) methanesulfonyl chloride (1.5 equiv.) was slowly added. The mixture was stirred for 0.5 h at the same temperature and then for a further 12 h at room temperature after which the mixture was extracted with CHCl_{3}. The extract was washed successively with aq. $\mathrm{HCl}(0.5 \mathrm{~mol}$ dm^{-3}) and brine, and evaporated and the remaining residue was chromatographed on silica gel using hexane-ethyl acetate ($8: 1$) as eluent.
(S)- N -(4-Bromobutan-2-yl)-2,3-dihydrooxazol-2-one 22a. Compound 22a ($2.31 \mathrm{~g}, 55.3 \%$) was obtained as a colourless oil from 20a ($4.50 \mathrm{~g}, 19.05 \mathrm{mmol}$); $[\alpha]_{\mathrm{D}}+13.87\left(c 2.64, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1741(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 1.38(3 \mathrm{H}, \mathrm{d}, J 6.9), 2.06-2.18(1$ $\mathrm{H}, \mathrm{m}), 2.26-2.38(1 \mathrm{H}, \mathrm{m}), 3.26-3.40(2 \mathrm{H}, \mathrm{m}), 4.20-4.28(1 \mathrm{H}$, $\mathrm{m}), 6.52(1 \mathrm{H}, \mathrm{d}, J 2.1)$ and $6.81(1 \mathrm{H}, \mathrm{d}, J 2.1) ; m / z(\mathrm{EI}) 221$ and $219\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 218.9856$. Calc. for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{NO}_{2} \mathrm{Br}, M$, 218.9895).
(R)- N -[4-Bromo-1-(tert-butyldiphenylsilyloxy)butan-2-yl]-2,3-dihydrooxazol-2-one 22b. Compound 22b ($8.08 \mathrm{~g}, 54.6 \%$) was obtained as a colourless oil from $20 \mathrm{~b}(15.3 \mathrm{~g}, 31.29 \mathrm{mmol})$; $[\alpha]_{\mathrm{D}}+19.2\left(c 1.03, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1747(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}$ $1.07(6 \mathrm{H}, \mathrm{s}), 1.60(3 \mathrm{H}, \mathrm{s}), 2.12-2.26(1 \mathrm{H}, \mathrm{m}), 2.34-2.48(1 \mathrm{H}$, $\mathrm{m}), 3.20-3.39(2 \mathrm{H}, \mathrm{m}), 3.82(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 4.8), 4.15-4.28(1 \mathrm{H}, \mathrm{m})$, $6.68(1 \mathrm{H}, \mathrm{d}, J 2.0), 6.82(1 \mathrm{H}, \mathrm{d}, J 2.0), 7.35-7.49(6 \mathrm{H}, \mathrm{m})$ and 7.55-7.68 ($4 \mathrm{H}, \mathrm{m}$); m/z (EI) 418 and 416 (M^{+}- tert-Bu) [Found: (M^{+}- tert- Bu), 416.0320 . Calc. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{BrNO}_{3} \mathrm{Si}$, ($M-$ tert -Bu), 416.0318].
(S)- N -(1-Bromoheptan-3-yl)-2,3-dihydrooxazol-2-one 22c. Compound $22 \mathrm{c}(1.90 \mathrm{~g}, 55.6 \%)$ was obtained as a colourless oil from $20 \mathrm{c}(3.62 \mathrm{~g}, 13.1 \mathrm{mmol}) ;[\alpha]_{\mathrm{D}}+15.5\left(c 1.1, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1747(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 0.87(3 \mathrm{H}, \mathrm{t}, J 7.0), 1.15-1.44(4$ $\mathrm{H}, \mathrm{m}), 1.56-1.84(2 \mathrm{H}, \mathrm{m}), 2.07-2.36(2 \mathrm{H}, \mathrm{m}), 3.21-3.41(2 \mathrm{H}$,
m), 3.99-4.13 ($1 \mathrm{H}, \mathrm{m}$), $6.49(1 \mathrm{H}, \mathrm{d}, J 2.0)$ and $6.83(1 \mathrm{H}, \mathrm{d}, J$ 2.0); m / z (EI) 263 and $261\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 261.0350$. Calc. for $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{BrNO}_{2}, M, 261.0364$).
(S)- N -[4-Bromo-1-(4-methoxyphenyl)butan-2-yl]-2,3-di-
hydrooxazol-2-one 22d. Compound $22 \mathrm{~d}(2.43 \mathrm{~g}, 57.2 \%)$ was obtained as colourless needles from $20 \mathrm{~d}(4.46 \mathrm{~g}, 13.07 \mathrm{mmol})$, $\mathrm{mp} 77-78{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}-15.5\left(c 0.62, \mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 1746$ $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 2.13-2.27(3 \mathrm{H}, \mathrm{m}), 2.40-2.54(1 \mathrm{H}, \mathrm{m}), 2.91(1 \mathrm{H}, \mathrm{dd}$, $J 6.1$ and 14.0), $3.07(1 \mathrm{H}, \mathrm{dd}, J 8.8$ and 14.0$), 3.27(1 \mathrm{H}$, ddd, J 6.0, 9.1 and 10.4), $3.41(1 \mathrm{H}$, ddd, $J 4.9,6.7$ and 10.4$), 3.79(3 \mathrm{H}$, s), 4.16-4.27 ($1 \mathrm{H}, \mathrm{m}$), $6.29(1 \mathrm{H}, \mathrm{d}, J 2.0), 6.70(1 \mathrm{H}, \mathrm{d}, J 2.0)$, $6.82(2 \mathrm{H}, \mathrm{d}, J 8.7)$ and $7.05(2 \mathrm{H}, \mathrm{d}, J 8.7) ; m / z(\mathrm{EI}) 327$ and 325 $\left(\mathrm{M}^{+}\right)$(Found: C, $51.75 ; \mathrm{H}, 4.95$; N, 4.35. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrNO}_{3}$ requires $\mathrm{C}, 51.7 ; \mathrm{H}, 4.95 ; \mathrm{N}, 4.3 \%$).
(\boldsymbol{S})- N -(1-Bromohept-6-en-3-yl)-2,3-dihydrooxazol-2-one 22e. Compound 22e ($2.87 \mathrm{~g}, 55.2 \%$) was obtained as a colourless oil from 20e ($5.53 \mathrm{~g}, 20.01 \mathrm{mmol}$); $[\alpha]_{\mathrm{D}}+36.2\left(c 0.72, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1746(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 1.64-1.78(1 \mathrm{H}, \mathrm{m}), 1.78-1.91(1$ H, m), 1.97-2.19 (3 H, m), 2.23-2.37 (1 H, m), 3.25 (1 H , ddd, J 6.4, 8.6 and 10.4), $3.35(1 \mathrm{H}$, ddd, $J 5.2,7.0$ and 10.4), 4.00-4.13(1 $\mathrm{H}, \mathrm{m}), 4.90-5.07(2 \mathrm{H}, \mathrm{m}), 5.64-5.70(1 \mathrm{H}, \mathrm{m}), 6.51(1 \mathrm{H}, \mathrm{d}, J 2.1)$, $6.81(1 \mathrm{H}, \mathrm{d}, J 2.1), 6.82(2 \mathrm{H}, \mathrm{d}, J 8.7)$ and $7.05(2 \mathrm{H}, \mathrm{d}, J 8.7) ; \mathrm{m} / \mathrm{z}$ (EI) 261 and $259\left(\mathrm{M}^{+}\right)$, 206 and $204\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$ (Found: $\mathrm{M}^{+}, 259.0217$. Calc. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{BrNO}_{2}, M, 259.0208$).
(\pm)- N-(3-Bromobutyl)-2,3-hydrooxazol-2-one 25a. Compound $25 \mathrm{a}(1.98 \mathrm{~g}, 58.6 \%)$ was obtained as a colourless oil from $23 \mathrm{a}(3.62 \mathrm{~g}, 15.40 \mathrm{mmol})$) $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 1752(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 1.76(3$ H, d, J6.7), 1.97-2.10 (1 H, m), 2.22-2.32 (1 H, m), 3.65-3.77 (1 $\mathrm{H}, \mathrm{m}), 3.79-3.90(1 \mathrm{H}, \mathrm{m}), 4.01-4.12(1 \mathrm{H}, \mathrm{m}), 6.61(1 \mathrm{H}, \mathrm{d}, J$ $2.0)$ and $6.80(1 \mathrm{H}, \mathrm{d}, J 2.0) ; m / z(\mathrm{EI}) 221$ and $219\left(\mathrm{M}^{+}\right), 140$ $\left(\mathrm{M}^{+}-\mathrm{Br}\right)$ (Found: $\mathrm{M}^{+}, 218.9856$. Calc. for $\mathrm{C}_{7} \mathrm{H}_{10} \mathrm{BrNO}_{2}, M$, 218.9895).
(\pm)- N-(4-Bromopentan-2-yl)-2,3-dihydrooxazol-2-one 25b. Compound 25b ($2.39 \mathrm{~g}, 60.4 \%$) was obtained as a colourless oil from 23b ($4.23 \mathrm{~g}, 17.0 \mathrm{mmol}$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1747(\mathrm{C}=0)$); δ_{H} 1.35 (1.5 H, d, $J 6.7$), 1.41 ($1.5 \mathrm{H}, \mathrm{d}, J 6.7$), 1.72 ($1.5 \mathrm{H}, \mathrm{d}, J 7.5$), 1.75 ($1.5 \mathrm{H}, \mathrm{d}, J 7.5$), $1.90-2.14(1 \mathrm{H}, \mathrm{m}), 2.21-2.43(1 \mathrm{H}, \mathrm{m})$, 3.85-4.02 ($0.5 \mathrm{H}, \mathrm{m}$), 4.19-4.32 ($0.5 \mathrm{H}, \mathrm{m}$), $6.51(0.5 \mathrm{H}, \mathrm{d}, J 2.1)$, $6.52(0.5 \mathrm{H}, \mathrm{d}, J 2.1), 6.80(0.5 \mathrm{H}, \mathrm{d}, J 2.1)$ and $6.82(0.5 \mathrm{H}, \mathrm{d}, J$ 2.1); m / z (EI) 235 and $233\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 233.0057$. Calc. for $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{BrNO}_{2}, M, 233.0051$)

(\pm)-N-(Pent-4-en-2-yl)-4-phenylsulfanyloxazolidin-2-one 29a

To an ice-cooled, stirred solution of $27 \mathrm{a}(2.08 \mathrm{~g}, 12.34 \mathrm{mmol})$ in methanol ($30 \mathrm{~cm}^{3}$), $\mathrm{NaBH}_{4}(0.810 \mathrm{~g}, 24.56 \mathrm{mmol})$ was added in small portions and the mixture was stirred at the same temperature for 0.5 h and then at room temperature for a further 2 h . The reaction mixture was quenched with acetone and evaporated under reduced pressure after which the residue was diluted with water and extracted with CHCl_{3}. The extract was evaporated and remaining residue was chromatographed on silica gel with hexane-ethyl acetate ($4: 1$) as eluent to give 28a. To a stirred mixture of 28a and diphenyl disulfide (2.67 g , 12.28 mmol) and THF ($20 \mathrm{~cm}^{3}$), tributylphosphine ($2.6 \mathrm{~g}, 12.9$ mmol) was slowly added and the mixture was stirred at the same temperature for 0.5 h and then for a further 12 h at room temperature. The mixture was evaporated and the remaining residue was chromatographed on silica gel using hexane-ethyl acetate ($8: 1$) as eluent. Evaporation of the appropriate fractions gave 29a ($2.02 \mathrm{~g}, 62.5 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1757(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}} 1.47(3 \mathrm{H}, \mathrm{d}, J 6.9), 2.36-2.47(0.5 \mathrm{H}, \mathrm{m}), 2.52(1 \mathrm{H}, \mathrm{dd}, J 7.2$ and 7.6), 2.71-2.82 $(0.5 \mathrm{H}, \mathrm{m}), 3.69-3.82(0.5 \mathrm{H}, \mathrm{m}), 3.95-4.08$ $(0.5 \mathrm{H}, \mathrm{m}), 4.29-4.36(1 \mathrm{H}, \mathrm{m}), 4.94-4.55(1 \mathrm{H}, \mathrm{m}), 5.02-5.20(3$ $\mathrm{H}, \mathrm{m}), 5.70-5.86(1 \mathrm{H}, \mathrm{m})$ and $7.31-7.53(5 \mathrm{H}, \mathrm{m}) ; m / z(\mathrm{CI}) 264$ $\left(\mathrm{M}^{+}+1\right)$ and $155\left(\mathrm{M}^{+}-\mathrm{SPh}\right)$ (Found: $\mathrm{M}^{+}, 263.0994$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2} \mathrm{~S}, M, 263.0980$).

(R)- N-(1-Phenylpent-4-en-2-yl)-4-phenylsulfanyloxazolidin-2one 29b

Compound 29 b ($1.31 \mathrm{~g}, 57.8 \%$) was obtained as a colourless oil
from $28 \mathrm{~b}(1.67 \mathrm{~g}, 6.82 \mathrm{mmol})$ with the same conditions as for the preparation of $29 \mathrm{a} ;[\alpha]_{\mathrm{D}}+49.6\left(c 0.48, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $1752(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 2.37-2.46(1 \mathrm{H}, \mathrm{m}), 2.74-2.86(1 \mathrm{H}, \mathrm{m}), 3.16-$ $3.23(2 \mathrm{H}, \mathrm{m}), 4.15-4.25(2 \mathrm{H}, \mathrm{m}), 4.26-4.37(2 \mathrm{H}, \mathrm{m}), 5.07-5.17$ $(2 \mathrm{H}, \mathrm{m}), 5.70-5.90(1 \mathrm{H}, \mathrm{m})$ and $7.10-7.47(5 \mathrm{H}, \mathrm{m}) ; m / z(\mathrm{CI})$ $340\left(\mathrm{M}^{+}+1\right)$ and $234\left(\mathrm{M}^{+}-\mathrm{SPh}\right)$ (Found: $\mathrm{M}^{+}, 339.1260$. Calc. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}, M, 339.1293$).

General procedure for radical cyclisation of 22a-e, 25a,b and

 29a,bTo a stirred solution of $\mathbf{2 2}($ or 25,29$)\left(0.01 \mathrm{~mol} \mathrm{dm}^{-3}\right)$ in benzene was added a solution of tributylstannane (1.5 equiv. to 22; 0.045 $\mathrm{mol} \mathrm{dm}{ }^{-3}$) in benzene with heating during 3 h . During the addition of tributylstannane, AIBN (0.1 equiv. to 22) was added at 0.5 h intervals. After the mixture had been heated for 5 h under reflux, it was evaporated and the residue was chromatographed on silica gel using the solvent shown below as eluent.
(5S,7aR)-5-Methyltetrahydro-1H,3H-pyrrolo [1,2-c]oxazol-3one 30a. Compound $30 \mathrm{a}(492 \mathrm{mg}, 72.0 \%$) was obtained as a colourless oil from 22a ($1.06 \mathrm{~g}, 4.85 \mathrm{mmol}$). Hexane-ethyl acetate ($4: 1$) was used as eluent; $[\alpha]_{\mathrm{D}}+70.7\left(c 0.89, \mathrm{CHCl}_{3}\right)$; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1747(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 1.17(3 \mathrm{H}, \mathrm{d}, J 6.6), 1.40-1.55(2$ $\mathrm{H}, \mathrm{m}), 1.94-2.03(1 \mathrm{H}, \mathrm{m}), 2.18-2.28(1 \mathrm{H}, \mathrm{m}), 3.84(1 \mathrm{H}, \mathrm{dd}, J$ 6.6 and 13.2), $3.88-4.04(1 \mathrm{H}, \mathrm{m}), 4.07(1 \mathrm{H}, \mathrm{dd}, J 3.5$ and 8.9$)$ and $4.40(1 \mathrm{H}$, dd, $J 8.3$ and 8.9$)$; $\delta_{\mathrm{C}} 21.7,31.5,34.6,54.3,58.4$, 67.7 and 161.4; $m / z(E I) 141\left(\mathrm{M}^{+}\right), 126\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$ (Found: $\mathrm{M}^{+}, 141.0774$. Calc. for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{2}, M, 141.0790$).

($5 R, 7 \mathrm{a} R$)-5-tert-Butyldiphenylsilyloxymethyltetrahydro-

1H,3H-pyrrolo[1,2-c]oxazol-3-one 30b. Compound 30b (1.5 g, 78%) was obtained from $22 \mathrm{~b}(2.3 \mathrm{~g}, 4.85 \mathrm{mmol})$ as colourless needles. Hexane-ethyl acetate ($6: 1$) was used as eluent; mp 91 $93^{\circ} \mathrm{C}$ (from ethyl acetate-hexane); $[\alpha]_{\mathrm{D}}+30.0\left(c 1.03, \mathrm{CHCl}_{3}\right)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1757(\mathrm{C}=0) ; \delta_{\mathrm{H}} 1.07(6 \mathrm{H}, \mathrm{s}), 1.59(3 \mathrm{H}, \mathrm{s}), 1.29-$ $1.44(1 \mathrm{H}, \mathrm{m}), 1.45-1.61(1 \mathrm{H}, \mathrm{m}), 1.92-2.21(2 \mathrm{H}, \mathrm{m}), 3.67(1 \mathrm{H}$, dd, $J 4.1$ and 10.7), 3.84-3.94 ($1 \mathrm{H}, \mathrm{m}$), 3.97-4.05 ($1 \mathrm{H}, \mathrm{m}$), 4.14 ($1 \mathrm{H}, \mathrm{dd}, J 3.3$ and 8.7), $4.43(1 \mathrm{H}, \mathrm{dd}, J 8.1$ and 8.7), $7.34-7.49$ ($6 \mathrm{H}, \mathrm{m}$) and 7.61-7.70 ($4 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}} 19.3,26.9,28.2,33.6,59.5$, $59.8,66.0,67.6,127.7,133.4,135.6$ and $162.2 ; m / z(\mathrm{CI}) 396\left(\mathrm{M}^{+}\right.$ +1) (Found: C, 70.0; H, 7.35; N, 3.6. $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{Si}$ requires C, $69.85 ; \mathrm{H}, 7.4 ; \mathrm{N}, 3.55 \%$).
(5S,7aR)-5-Butyltetrahydro-1 H,3H-pyrrolo [1,2-c]oxazol-3one 30c. Compound 30c ($611 \mathrm{mg}, 68.5 \%$) was obtained from 22c $(1.26 \mathrm{~g}, 4.85 \mathrm{mmol})$ as a colourless oil. Hexane-ethyl acetate (5:1) was used as eluent; $[\alpha]_{\mathrm{D}}+52.8$ (c $1.02, \mathrm{CHCl}_{3}$); $\nu_{\max }($ neat $) / \mathrm{cm}^{-1} 1752(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 0.82-0.94(3 \mathrm{H}, \mathrm{m}), 1.25-1.69(8$ $\mathrm{H}, \mathrm{m}), 1.96-2.06(1 \mathrm{H}, \mathrm{m}), 2.19-2.30(1 \mathrm{H}, \mathrm{m}), 3.72-4.98$ (2 H , $\mathrm{m}), 4.14(1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 8.9$)$ and $4.46(1 \mathrm{H}$, dd, $J 3.2$ and 8.9$)$; $\delta_{\mathrm{C}} 13.9,22.4,28.5,32.7,33.3,36.3,58.7,59.0,67.3$ and 161.7; m / z (EI) $183\left(\mathrm{M}^{+}\right)$(Found: M^{+}, 183.1256. Calc. for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{2}, M, 183.1259$).
(5S,7aR)-5-(p-Methoxybenzyl)tetrahydro-1 $\mathrm{H}, 3 \mathrm{H}$-pyrrolo-[1,2-c]oxazol-3-one 30d. Compound 30d $(820 \mathrm{mg}$, 68.7%) was obtained from $22 \mathrm{~d}(1.58 \mathrm{~g}, 4.85 \mathrm{mmol})$ as a colourless oil. Hexane-ethyl acetate ($5: 1$) was used as eluent; $[\alpha]_{\mathrm{D}}+51.9\left(c \quad 0.53, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1752(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}$ 1.35-1.53 ($1 \mathrm{H}, \mathrm{m}$), 1.58-1.75 ($1 \mathrm{H}, \mathrm{m}$), 1.91-2.02 ($1 \mathrm{H}, \mathrm{m}$), $2.02-2.17(1 \mathrm{H}, \mathrm{m}), 2.75(1 \mathrm{H}, \mathrm{dd}, J 7.6$ and 13.8$), 2.91(1 \mathrm{H}, \mathrm{dd}$, $J 5.2$ and 13.8), $3.79(3 \mathrm{H}, \mathrm{s}), 3.68-3.80(1 \mathrm{H}, \mathrm{m}), 4.06-4.17(1 \mathrm{H}$, $\mathrm{m}), 4.11(1 \mathrm{H}, \mathrm{dd}, J 3.5$ and 8.9$), 4.45(1 \mathrm{H}$, dd, $J 7.9$ and 8.9$)$, $6.84(2 \mathrm{H}, \mathrm{d}, J 8.6)$ and $7.15(2 \mathrm{H}, \mathrm{d}, J 8.6)$; $\delta_{\mathrm{C}} 31.3,31.5,40.5$, 55.1, 58.8, 59.4, 67.5, 113.6 (2 lines), $129.5,130.4$ (2 lines), 158.1 and 161.3; $m / z(\mathrm{EI}) 247\left(\mathrm{M}^{+}\right), 126\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OCH}_{3}\right)$ (Found: $\mathrm{M}^{+}, 247.1200$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3}, M, 247.1208$).
(5S,7aR)-5-But-3'-enyltetrahydro-1 $\mathrm{H}, 3 \mathrm{H}$-pyrrolo $\left.{ }^{\prime} 1,2-c\right]$ -
oxazol-3-one 30e. Compound 30e ($665 \mathrm{mg}, 75.8 \%$) was obtained from 22e ($1.26 \mathrm{~g}, 4.85 \mathrm{mmol}$) as a colourless oil. Hexane-ethyl acetate ($5: 1$) was used as eluent; $[\alpha]_{\mathrm{D}}+47.7$ (c $\left.0.65, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1747(\mathrm{C}=0) ; \delta_{\mathrm{H}} 1.25-1.43(1 \mathrm{H}$, $\mathrm{m}), 1.43-1.71(4 \mathrm{H}, \mathrm{m}), 1.99-2.10(1 \mathrm{H}, \mathrm{m}), 2.12-2.35(2 \mathrm{H}, \mathrm{m})$,
3.79-3.97 ($2 \mathrm{H}, \mathrm{m}$), $4.17(1 \mathrm{H}, \mathrm{dd}, J 3.2$ and 9.0), $4.48(1 \mathrm{H}, \mathrm{dd}, J$ 8.0 and 9.0), 4.93-5.12 ($2 \mathrm{H}, \mathrm{m}$) and 5.79-5.94 ($1 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}} 30.5$, 31.1, 32.5, 35.5, 58.4, 58.5, 67.2, 114.5, 137.6 and $161.6 ; m / z$ (EI) $181\left(\mathrm{M}^{+}\right), 126\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CH}_{2} \quad \mathrm{CH}=\mathrm{CH}_{2}\right)$ (Found: M^{+}, 181.1113. Calc. for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{2}, M, 181.1103$).

Radical cyclisation of 25 a ; Synthesis of ($7 S^{*}, 7 \mathrm{a} R^{*}$)-7-methyltetrahydro- $1 \mathrm{H}, 3 \mathrm{H}$-pyrrolo $[1,2-c$]oxazol-3-one 32a and ($7 R^{*}, 7 \mathrm{a} R^{*}$)-7-methyltetrahydro-1 $\mathrm{H}, 3 \mathrm{H}$-pyrrolo $[1,2$-c]oxazol-
3-one 33a. Compound 25 ($1.06 \mathrm{~g}, 4.85 \mathrm{mmol}$) was treated with tributylstannane in the presence of AIBN and worked up according to the same conditions as above. Elution with hexane-ethyl acetate (2:1) gave 32a ($288 \mathrm{mg}, 42.1 \%$); $\nu_{\max }($ neat $) / \mathrm{cm}^{-1} 1752(\mathrm{C}=0) ; \delta_{\mathrm{H}} 0.89(3 \mathrm{H}, \mathrm{d}, J 7.1), 1.70-1.81(1$ $\mathrm{H}, \mathrm{m}), 2.03-2.29(2 \mathrm{H}, \mathrm{m}), 3.19(1 \mathrm{H}, \mathrm{dt}, J 3.2$ and 9.4$)$, 3.58 (1 H, dt, $J 8.2$ and 11.2), 3.98 (1 H , ddd, $J 3.3$, 5.2 and 8.5), 4.27 (1 $\mathrm{H}, \mathrm{dd}, J 3.3$ and 9.3) and $4.37\left(1 \mathrm{H}, \mathrm{dd}, J 8.5\right.$ and 9.3); $\delta_{\mathrm{C}} 12.8$, 33.4, 33.5, 43.5, 62.1, 63.8 and $161.5 ; m / z$ (EI) $141\left(\mathrm{M}^{+}\right)$ (Found: $\mathrm{M}^{+}, 141.0784$. Calc. for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{2}, M, 141.0790$). Successive elution with hexane-ethyl acetate (1:1) yielded 33a ($139 \mathrm{mg}, 20.3 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1752(\mathrm{C}=0) ; \delta_{\mathrm{H}} 1.06(3 \mathrm{H}, \mathrm{d}, J$ $6.5), 1.70-1.89(2 \mathrm{H}, \mathrm{m}), 2.18-2.30(1 \mathrm{H}, \mathrm{m}), 3.25-3.36(1 \mathrm{H}, \mathrm{m})$, 3.36-3.46(1 H, m), $3.59(1 \mathrm{H}, \mathrm{dt}, J 8.4$ and 11.5$), 4.17(1 \mathrm{H}, \mathrm{dd}, J$ 3.1 and 8.9) and 4.47 ($1 \mathrm{H}, \mathrm{dd}, J 7.8$ and 8.9); $\delta_{\mathrm{C}} 15.0,34.2,38.5$, 45.6, 65.5, 66.4 and 161.6; m / z (EI) 141 (M^{+}) (Found: M^{+}, 141.0792. Calc. for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{2}, M, 141.0790$).

Radical cyclisation of $\mathbf{2 5 b}$; Synthesis of $\left(5 S^{*}, 7 S^{*}, 7 \mathrm{a} R^{*}\right)$-5,7-dimethyltetrahydro- $\mathrm{H}, 3 \mathrm{H}$-pyrrolo [1,2-c]oxazol-3-one 32b and ($5 S^{*}, 7 R^{*}, 7 \mathrm{a} R^{*}$)-5,7-dimethyltetrahydro-1H,3H-pyrrolo [1,2-c]-oxazol-3-one 33b. Compound 25b ($1.13 \mathrm{~g}, 4.85 \mathrm{mmol}$) was treated with tributylstannane in the presence of AIBN and worked up as above. Elution with hexane-ethyl acetate ($2: 1$) yielded 32b ($338 \mathrm{mg}, 45.0 \%$); $\nu_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1746(\mathrm{C}=0)$; δ_{H} 0.89 (3 H, d, J7.2), 1.27 (3 H, d, J 6.5), 1.72 (1 H , ddd, $J 6.0,8.5$ and 13.0), $2.00(1 \mathrm{H}$, ddd, $J 1.3,7.0$ and 13.0), 2.16-2.29 (1 H , m), 3.87-4.00 ($1 \mathrm{H}, \mathrm{m}$), $4.05(1 \mathrm{H}$, ddd, J3.3, 5.0 and 8.5), 4.25 (1 H , dd, $J 3.4$ and 9.3) and $4.41(1 \mathrm{H}, \mathrm{dd}, J 8.5$ and 9.3$)$; $\delta_{\mathrm{C}} 13.0$, 21.7, 34.8, 42.7, 52.2, 61.5, 63.8 and 161.5; m/z (EI) 155 (M ${ }^{+}$) (Found: $\mathrm{M}^{+}, 155.0967$. Calc. for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2}, M, 155.0946$). Successive elution with hexane-ethyl acetate (1:1) yielded 33b ($138 \mathrm{mg}, 18.4 \%$), $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 1752(\mathrm{C}=0) ; \delta_{\mathrm{H}} 1.03(3 \mathrm{H}, \mathrm{d}, J$ 6.5), 1.28 ($3 \mathrm{H}, \mathrm{d}, J 6.4$), $1.17-1.28(1 \mathrm{H}, \mathrm{m}), 1.74-1.92(1 \mathrm{H}, \mathrm{m})$, $2.42(1 \mathrm{H}, \mathrm{dt}, J 7.1$ and 13.0), $3.48(1 \mathrm{H}, \mathrm{ddd}, J 3.3,8.0$ and 8.7$)$, 3.86-3.99 ($1 \mathrm{H}, \mathrm{m}$), $4.14(1 \mathrm{H}, \mathrm{dd}, J 3.2$ and 9.0$)$ and $4.44(1 \mathrm{H}$, dd, $J 8.0$ and 9.0); $\delta_{\mathrm{C}} 14.8,22.4,39.9,43.7,54.8,64.6,66.3$ and 161.5; m/z (EI) $155\left(\mathrm{M}^{+}\right)$(Found: M^{+}, 155.0937. Calc. for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2}, M, 155.0946$).

Radical cyclisation of 29 a . Compound $29 \mathrm{a}(1.06 \mathrm{~g}, 4.02 \mathrm{mmol}$) was treated with tributylstannane ($1.75 \mathrm{~g}, 8.04 \mathrm{mmol}$) in the presence of AIBN and worked up as above. Elution with hexane-ethyl acetate ($2: 1$) gave $\mathbf{3 2 b}$ ($486 \mathrm{mg}, 78 \%$), the spectral data of which were identical with those of 32b, obtained from 25b.
(5S,7S,7aR)-5-Benzyl-7-methyltetrahydro-1 $\mathrm{H}, 3 \mathrm{H}$-pyrrolo-[1,2-c]oxazol-3-one 36. Compound 36 ($446 \mathrm{mg}, 65.5 \%$) was obtained from 29b ($1.00 \mathrm{~g}, 2.95 \mathrm{mmol}$), $[\alpha]_{\mathrm{D}}-48.46$ (c $\left.0.97, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1751(\mathrm{C}=0) ; \delta_{\mathrm{H}} 0.85(3 \mathrm{H}, \mathrm{d}, J$ 7.2), 1.73-1.92 ($2 \mathrm{H}, \mathrm{m}$), 2.08-2.28 ($1 \mathrm{H}, \mathrm{m}$), 2.79 ($1 \mathrm{H}, \mathrm{dd}, J 8.0$ and 13.4), $3.03(1 \mathrm{H}, \mathrm{dd}, J 4.9$ and 13.4), $3.85(1 \mathrm{H}$, ddd, $J 3.3$, 5.0 and 8.3), $4.08-4.18(1 \mathrm{H}, \mathrm{m}), 4.23(1 \mathrm{H}, \mathrm{dd}, J 3.3$ and 9.3$)$, $4.39(1 \mathrm{H}, \mathrm{dd}, J 8.3$ and 9.3$)$ and $7.19-7.33(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 13.3$, $34.7,39.8,41.5,57.3,61.9,63.9,126.5,128.3$ (2 lines), 129.6 (2 lines), 137.5 and $161.5 ; m / z$ (EI) $231\left(\mathrm{M}^{+}\right), 140,\left(\mathrm{M}^{+}-\right.$ $\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$) (Found: $\mathrm{M}^{+}, 231.1259$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3}, M$, 231.1259).
($2 R, 5 S$)-1-Benzyloxycarbonyl-2-hydroxymethyl-5-methylpyrrolidine 38
A mixture of $\mathbf{3 0 a}(463 \mathrm{mg}, 3.29 \mathrm{mmol})$ and NaOH in EtOH $\left(10 \% ; 10 \mathrm{~cm}^{3}\right)$ was heated for 12 h under reflux, after which it was extracted with $\mathrm{CHCl}_{3}\left(50 \mathrm{~cm}^{3}\right)$. The organic extract was
evaporated and the residue ($310 \mathrm{mg}, 82 \%$) was used for the following reaction without purification. To a stirred solution of the oily residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(350 \mathrm{mg})$ and then a solution of benzylchloroformate in toluene (30%; $1.6 \mathrm{~cm}^{3}$) toluene solution ($1.6 \mathrm{~cm}^{3}$) at room temperature.
The mixture was diluted with water and extracted with CHCl_{3}. The extract was washed with aq. citric acid and then evaporated. The resulting residue was chromatographed on silica gel using hexane-ethyl acetate ($3: 1$) as eluent and evaporation of the fractions yielded 38 ($428 \mathrm{mg}, 52.3 \%$ from 30a); $[\alpha]_{\mathrm{D}}-43.8$ (c 0.10, CHCl_{3}); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3431(\mathrm{OH})$ and $1696(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 1.14(3 \mathrm{H}, \mathrm{d}, J 6.3), 1.48-1.56(1 \mathrm{H}, \mathrm{m}), 1.63-$ $1.72(1 \mathrm{H}, \mathrm{m}), 2.00-2.15(2 \mathrm{H}, \mathrm{m}), 3.56(1 \mathrm{H}, \mathrm{dd}, J 4.0$ and 11.0$)$, $3.71(1 \mathrm{H}, \mathrm{dd}, J 6.9$ and 11.0$), 4.01-4.10(2 \mathrm{H}, \mathrm{m}), 5.13(2 \mathrm{H}, \mathrm{q}, J$ 12.3) and 7.26-7.40 ($5 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}} 20.2,26.1,31.0,54.2,60.1,66.3$, 67.1, 127.9 (3 lines), 128.4 (2 lines), 136.4 and $156.5 ; m / z$ (EI) $250\left(\mathrm{M}^{+}\right), 142\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)$ (Found: $\mathrm{M}^{+}, 249.1351$. Calc. for $\left.\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3}, M, 249.1365\right)$.

(5R,7aR)-5-Hydroxymethyltetrahydro-1 $\mathrm{H}, 3 \mathrm{H}$-pyrrolo $[1,2-c]$ -oxazol-3-one 39

A mixture of 30b ($650 \mathrm{mg}, 1.65 \mathrm{mmol}$), conc. $\mathrm{HCl}\left(3 \mathrm{~cm}^{3}\right)$ and THF ($9 \mathrm{~cm}^{3}$) was heated for 1.5 h under reflux after which it was extracted with CHCl_{3}. The extract was washed with NaHCO_{3} (5%), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated and the resulting residue was chromatographed on silica gel. After removal of non-polar material by elution with hexane-ethyl acetate ($6: 1$), successive elution with CHCl_{3}-methanol ($9: 1$) yielded 39 ($232 \mathrm{mg}, 90 \%$) as a colourless oil; $[\alpha]_{\mathrm{D}}+45.8\left(c 1.09, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $3430(\mathrm{OH})$ and $1741(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 1.46-1.62(1 \mathrm{H}, \mathrm{m}), 1.70-1.84(1$ $\mathrm{H}, \mathrm{m}), 2.05-2.18(1 \mathrm{H}, \mathrm{m}), 2.19-2.29(1 \mathrm{H}, \mathrm{m}), 3.50(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 6.9 and 11.3), $3.75(1 \mathrm{H}, \mathrm{dd}, J 3.6$ and 11.3), $3.90-4.06(2 \mathrm{H}, \mathrm{m})$, $4.20(1 \mathrm{H}, \mathrm{dd}, J 4.1$ and 8.9$)$ and $4.55(1 \mathrm{H}, \mathrm{dd}, J 8.3$ and 8.9$)$; δ_{C} 28.8, 31.5, 59.3, 60.8, 65.2, 68.4 and $162.2 ; m / z$ (EI) $157\left(\mathrm{M}^{+}\right)$ (Found: $\mathrm{M}^{+}, 157.0743$. Calc. for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{3}, M, 157.0739$).

(5R,7aR)-5-(Benzyloxymethyl)tetrahydro-1 $\mathrm{H}, \mathbf{3 H}$-pyrrolo-[1,2-c] oxazol-3-one 40a

To an ice-cooled, stirred mixture of $\mathbf{3 9}(300 \mathrm{mg}, 1.91 \mathrm{mmol})$ and NaH ($115 \mathrm{mg}, 4.78 \mathrm{mmol}$; used after removal of oil by washing with light petroleum) and DMF ($5 \mathrm{~cm}^{3}$), benzyl bromide (490 $\mathrm{mg}, 2.87 \mathrm{mmol}$) was added. After the mixture was allowed to stand for 1 h at the same temp. and then stirred for an additional 2 h at room temp., it was poured onto ice-water and extracted with ether. The extract was evaporated and the residue was chromatographed on silica gel using hexane-ethyl acetate ($5: 1$) as eluent to give 40a ($346 \mathrm{mg}, 73.3 \%$) as a colourless oil; $[\alpha]_{\mathrm{D}}+58.7\left(\right.$ c $\left.1.23, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1752$ $(\mathrm{C}=0) ; \delta_{\mathrm{H}} 1.42-1.57(1 \mathrm{H}, \mathrm{m}), 1.83-1.96(1 \mathrm{H}, \mathrm{m}), 2.04-2.26(2$ $\mathrm{H}, \mathrm{m}), 3.53(1 \mathrm{H}, \mathrm{dd}, J 5.0$ and 10.0), $3.57(1 \mathrm{H}, \mathrm{dd}, J 5.0$ and $10.0), 3.89-3.99(1 \mathrm{H}, \mathrm{m}), 4.04-4.12(1 \mathrm{H}, \mathrm{m}), 4.17(1 \mathrm{H}, \mathrm{dd}, J 3.1$ and 8.9$), 4.49(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and 8.9$), 4.55(1 \mathrm{H}, \mathrm{d}, J 12.0), 4.62$ $(1 \mathrm{H}, \mathrm{d}, J 12.0)$ and $7.24-7.38(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}} 28.9,31.4,58.1,59.3$, $67.5,72.4,73.2,127.5,127.6$ (2 lines), 128.3 (2 lines), 138.1 and 161.5; m / z (EI) 247 (M^{+}) (Found: $\mathrm{M}^{+}, 247.1198$. Calc. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{3} ; M, 247.1208$).

($5 R, 7 \mathrm{aR}$)-5-(Methoxymethyl)tetrahydro- $\mathbf{~ H , 3 H}$-pyrrolo-[1,2-c] oxazol-3-one 40b

To an ice-cooled, stirred mixture of $\mathbf{3 9}(300 \mathrm{mg}, 1.91 \mathrm{mmol})$ and NaH ($115 \mathrm{mg}, 4.78 \mathrm{mmol}$; used after removal of oil by washing with light petroleum) and DMF ($5 \mathrm{~cm}^{3}$), methyl iodide (364 mg , 2.87 mmol) was added. After the mixture was allowed to stand for 1 h at the same temp. and then stirred for an additional 12 h at room temp., it was poured onto ice-water and extracted with ether. The extract was evaporated and the residue was chromatographed on silica gel using hexane-ethyl acetate $(5: 1)$ as eluent to give $\mathbf{4 0 b}\left(250.6 \mathrm{mg}, 76.7 \%\right.$) as a colourless oil; $[\alpha]_{\text {D }}$ $+64.7\left(c 1.58, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1751(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 1.41-$ $1.56(1 \mathrm{H}, \mathrm{m}), 1.76-1.85(1 \mathrm{H}, \mathrm{m}), 2.02-2.25(2 \mathrm{H}, \mathrm{m}), 3.39(3 \mathrm{H}$,
s), 3.41 ($1 \mathrm{H}, \mathrm{dd}, J 5.0$ and 9.8), $3.88-3.98(1 \mathrm{H}, \mathrm{m}), 4.00-4.09(1$ $\mathrm{H}, \mathrm{m}), 4.17(1 \mathrm{H}, \mathrm{dd}, J 3.0$ and 8.8$)$ and $4.49(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and 8.8); $\delta_{\mathrm{C}} 28.7,31.4,58.0,59.1,59.4,67.5,74.8$ and $161.7 ; m / z$ (EI) $171\left(\mathrm{M}^{+}\right)$(Found: M^{+}, 171.0902. Calc. for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{3}, M$, 171.0895).

(5R,7aR)-5-(Methoxymethoxymethyl)tetrahydro- $1 \mathrm{H}, 3 \mathrm{H}-$ pyrrolo [1,2-c]oxazol-3-one 40c

To an ice-cooled, stirred mixture of $39(300 \mathrm{mg}, 1.91 \mathrm{mmol})$, diisopropylethylamine ($549 \mathrm{mg}, 1.87 \mathrm{mmol}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 cm^{3}), methoxymethyl chloride (MOMCl; $185 \mathrm{mg}, 2.29 \mathrm{mmol}$) was added. The mixture was stirred at the same temp. for 0.5 h and an additional 12 h at room temperature, after which it was poured onto water and extracted with CHCl_{3}. The extract was washed with aq. $\mathrm{HCl}(5 \%)$ and aq. $\mathrm{NaHCO}_{3}(5 \%)$ and evaporated to give a residue which was chromatographed on silica gel. Elution with hexane-ethyl acetate ($3: 1$) yielded 40c ($312 \mathrm{mg}, 81 \%$) as colourless oil; $[\alpha]_{\mathrm{D}}+59.2$ (c $1.18, \mathrm{CHCl}_{3}$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1752(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}} 1.44-1.59(1 \mathrm{H}, \mathrm{m}), 1.77-1.90(1$ $\mathrm{H}, \mathrm{m}), 2.04-2.15(2 \mathrm{H}, \mathrm{m}), 2.16-2.29(1 \mathrm{H}, \mathrm{m}), 3.37(3 \mathrm{H}, \mathrm{s}), 3.56$ $(1 \mathrm{H}, \mathrm{dd}, J 3.0$ and 8.8$), 4.49(1 \mathrm{H}, \mathrm{dd}, J 3.0$ and 8.8$)$ and $4.65(2$ $\mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{c}} 28.8,31.2,55.2,58.0,59.2,67.4,69.8,96.4$ and 161.5; $m / z(\mathrm{CI}) 202\left(\mathrm{M}^{+}+1\right)$ (Found: M^{+}, 201.1012. Calc. for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{4}, M, 201.1001$).

($2 R, 5 R$)-2-Benzyloxymethyl-5-hydroxymethylpyrrolidine 41a

A mixture of $40 \mathrm{a}(321 \mathrm{mg}, 1.30 \mathrm{mmol})$ and NaOH in ethanol (1 mol dm${ }^{-3} ; 9 \mathrm{~cm}^{3}$) was heated for 2 h under reflux, after which the mixture was evaporated and extracted with CHCl_{3}. The extract was evaporated and the residue chromatographed on silica gel using CHCl_{3}-methanol ($9: 1$) as eluent to give 41a (218 $\mathrm{mg}, 76 \%$) as a colourless oil; $[\alpha]_{\mathrm{D}}-12.5$ (c $0.10, \mathrm{CHCl}_{3}$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3325(\mathrm{OH}) ; \delta_{\mathrm{H}} 1.44-1.60(2 \mathrm{H}, \mathrm{m}), 1.81-1.95(2$ $\mathrm{H}, \mathrm{m}), 2.38(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.31-3.59(6 \mathrm{H}, \mathrm{m}), 4.55(2 \mathrm{H}, \mathrm{s})$ and 7.25-7.40 ($5 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{C}} 27.2,28.2,57.4,58.9,64.4,72.3,73.2$, 127.7 (3 lines), 128.4 (2 lines) and $138.1 ; m / z(\mathrm{CI}) 222\left(\mathrm{M}^{+}+1\right)$, $100\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{OBn}\right)$ [Found: $\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{OH}\right), 190.1239$. Calc. for $\left.\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO},\left(M-\mathrm{CH}_{2} \mathrm{OH}\right), 190.1232\right]$.

(2R,5R)-2-Hydroxymethyl-5-methoxymethylpyrrolidine 41b

A mixture of 40 b ($225 \mathrm{mg}, 1.31 \mathrm{mmol}$) and NaOH in ethanol (1 $\mathrm{mol} \mathrm{dm}{ }^{-3} ; 9 \mathrm{~cm}^{3}$) was heated and worked up as in the synthesis of 41a to yield 41b ($167 \mathrm{mg}, 88 \%$) as a colourless oil; $[\alpha]_{\mathrm{D}}-14.3$ ($c 0.36, \mathrm{CHCl}_{3}$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3446(\mathrm{OH}) ; \delta_{\mathrm{H}} 1.42-1.59(2 \mathrm{H}$, m), 1.80-1.96 ($2 \mathrm{H}, \mathrm{m}$), $2.99(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.28-3.44(4 \mathrm{H}, \mathrm{m}), 3.36$ ($3 \mathrm{H}, \mathrm{m}$) and $3.51-3.57(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 27.2,28.1,57.6,59.0,59.5$, 63.9 and $74.3 ; m / z(\mathrm{CI}) 146\left(\mathrm{M}^{+}+1\right), 114\left(\mathrm{M}^{+}-\mathrm{OCH}_{3}\right)$ and $100\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{OCH}_{3}\right)$ [Found: $\left(\mathrm{M}^{+}+\mathrm{H}\right)$, 146.1162. Calc. for $\left.\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{NO}_{2},(M+\mathrm{H}), 146.1181\right]$.

(2R,5R)-2-Hydroxymethyl-5-methoxymethoxymethylhydroxypyrrolidine 41c

A mixture of 40 c ($301.2 \mathrm{mg}, 1.50 \mathrm{mmol}$) and NaOH in ethanol $\left(1 \mathrm{~mol} \mathrm{dm}^{-3} ; 9 \mathrm{~cm}^{3}\right)$ was heated and worked up as in the synthesis of 41a to yield $41 \mathrm{c}(220.5 \mathrm{mg}, 84 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}-11.9\left(c 2.49, \mathrm{CHCl}_{3}\right) ; \nu_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3328(\mathrm{OH}) ; \delta_{\mathrm{H}}$ 1.48-1.62 ($2 \mathrm{H}, \mathrm{m}$), 1.86-2.00 ($2 \mathrm{H}, \mathrm{m}$), $2.83(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.32-$ $3.52(4 \mathrm{H}, \mathrm{m}), 3.38(3 \mathrm{H}, \mathrm{m}), 4.64(1 \mathrm{H}, \mathrm{d}, J 6.4)$ and $4.66(1 \mathrm{H}, \mathrm{d}$, $J 6.9) ; \delta_{\mathrm{C}} 27.2,28.1,55.2,57.4,59.2,64.3,69.6$ and $96.6 ; m / z(\mathrm{CI})$ $176\left(\mathrm{M}^{+}+1\right)$ and $100\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{OCH}_{3}\right)$ (Found: $\mathrm{M}^{+}, 175.1190$. Calc. for $\left.\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}_{3}, M, 175.1208\right)$.

(2R,5R)-1-Benzyl-2,5-bis(benzyloxymethyl)pyrrolidine 42

To an ice-cooled, stirred mixture of $41 \mathrm{a}(196.3 \mathrm{mg}, 0.89 \mathrm{mmol})$ and NaH ($106 \mathrm{mg}, 4.44 \mathrm{mmol}$, used after removal of oil by
washing with light petroleum) and DMF ($5 \mathrm{~cm}^{3}$), benzyl bromide ($456 \mathrm{mg}, 2.66 \mathrm{mmol}$) was added. The mixture was allowed to stand for 1 h at the same temp. and then stirred for an additional 2 h at room temp. after which it was poured onto ice-water and extracted with ether. The organic extract was evaporated and the remaining residue was chromatographed on silica gel using CHCl_{3}-methanol ($9: 1$) as eluent to give 42 (143 $\mathrm{mg}, 40.0 \%)$ as a colourless oil; $[\alpha]_{\mathrm{D}}+69.6\left(c 1.82, \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}$ 1.63-1.80 ($2 \mathrm{H}, \mathrm{m}$), 1.94-2.12 ($2 \mathrm{H}, \mathrm{m}$), 3.18-3.29 ($2 \mathrm{H}, \mathrm{m}$), 3.30-3.48 (4 H, m), $3.85(1 \mathrm{H}, \mathrm{d}, J 14.0), 4.08$ ($1 \mathrm{H}, \mathrm{d}, J 14.6$), $4.47(4 \mathrm{H}, \mathrm{s})$ and $7.14-7.43(15 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 27.4,52.7,60.7,71.9$, 73.1, 126.5, 127.4, 128.2 and 138.4; m / z (EI) $401\left(\mathrm{M}^{+}\right), 200$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{OBn}\right)$ (Found: $\mathrm{M}^{+}, 401.2345$. Calc. for $\mathrm{C}_{27} \mathrm{H}_{31^{-}}$ $\left.\mathrm{NO}_{2}, M, 401.2355\right)$.

References

1 T. Yokomatsu, Y. Yuasa and S. Shibuya, Heterocycles, 1992, 33, 1051 and references cited therein.
2 (a) S. Takano, S. Otaki and K. Ogasawara, J. Chem. Soc., Chem. Commun., 1983, 1172; (b) H. Takahata, H. Bondoh and T. Momose, Tetrahedron: Asymmetry, 1991, 2, 351.
3 (a) C. Celimene, H. Dhimane, M. L. Bail and G. Lhommet, Tetrahedron Lett., 1994, 35, 6105 and references cited therein; (b) D. F. Taber, P. B. Deker and L. J. Silverberg, J. Org. Chem., 1992, 57, 5990.
4 (a) Y. Kawakami, Y. Ito, T. Kitagawa, Y. Taniguchi, T. Katuski and M. Yamaguchi, Tetrahedron Lett., 1984, 25, 857; (b) M. Uchikawa, T. Hanamoto, T. Katsuki and M. Yamaguchi, Tetrahedron Lett., 1986, 27, 4577; (c) K. Fuji, M. Node and T. Kawabata, Tetrahedron Lett., 1990, 31, 3175; (d) J. K. Whitesell and S. W. Ffelman, J. Org. Chem., 1977, 42, 1663; (e) J. K. Whitesell, M. A. Minton and K.-M. Chen, J. Org. Chem., 1988, 53, 5383; (f) R. H. Schessinger and E. J. Iwanowicz, Tetrahedron Lett., 1987, 28, 2083.
5 For reviews on free radical cyclisation seé: (a) B. Giese, Angew. Chem., Int. Ed. Engl., 1989, 28, 969; D. P. Curran, Synthesis; (b) 1988, 417; (c) 1988, 489; (d) C. Jasperse, D. P. Curran and T. L. Fevig, Chem. Rev., 1991, 91, 1237.

6 S. Kano, Y. Yuasa, K. Asami and S. Shibuya, Chem. Lett., 1986, 5, 735.

7 (a) Y. Yuasa, S. Kano and S. Shibuya, Heterocycles, 1991, 32, 2311; (b) Y. Yuasa, J. Ando and S. Shibuya, J. Chem. Soc., Chem. Commun., 1994, 455; (c) Y. Yuasa, J. Ando and S. Shibuya, J. Chem. Soc., Chem. Commun., 1994, 1383.
8 B. Seuring and D. Seebach, Helv. Chim. Acta, 1977, 60, 1175.
9 X. Wang, J. Chem. Soc., Chem. Commun., 1991, 1515.
10 K. Mori, T. Takigawa and T. Matsuo, Tetrahedron, 1979, 35, 933.

11 B. Kuchler, G. Voß and H. Gerlach, Liebigs Ann. Chem., 1991, 545.
12 (a) J. A. Marshall and G. S. Welmaker, Tetrahedron Lett., 1991, 32, 2101; (b) J. M. Finan and Y. Kishi, Tetrahedron Lett., 1982, 23, 2719; (c) P. Ma, V. S. Martin, S. Masamune, K. B. Sharpless and S. M. Viti, J. Org. Chem., 1982, 47, 1378; (d) Y. Gao, R. M. Hanson, J. M. Klunder, S. Y. Ko, H. Masamune and K. B. Sharpless, J. Am. Chem. Soc., 1987, 109, 5765.

13 O. Mitsunobu, M. Wada and T. Sano, J. Am. Chem. Soc., 1972, 94, 679.

14 (a) D. J. Hart and Y.-M. Tsai, J. Am. Chem. Soc., 1984, 106, 8206; (b) D. A. Burnett, J.-K. Choi, D. J. Hart and Y.-M. Tsai, J. Am. Chem. Soc., 1984, 106, 8201; (c) J.-K. Choi and D. J. Hart, Tetrahedron, 1985, 41, 3959.
15 M. B. Colidge and W. T. Borden, J. Am. Chem. Soc., 1988, 110, 2298.
16 M. Marzi and D. Misti, Tetrahedron Lett., 1989, 30, 6075.
17 S. Takano, M. Moriya, Y. Iwabuchi and K. Ogasawara, Tetrahedron Lett., 1989, 30, 3805.
18 W. C. Still, M. Kahn and M. Mitra, J. Org. Chem., 1978, 43, 2923.

Paper 5/04716A
Received 18th July 1995
Accepted 29th September 1995

